-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGreedyHash_HashUQ.py
401 lines (327 loc) · 16.3 KB
/
GreedyHash_HashUQ.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
from utils.tools import *
from network import *
import os
import torch
import torch.optim as optim
import time
import numpy as np
import random
import argparse
import pandas as pd
from functools import partialmethod
from tqdm import tqdm
torch.multiprocessing.set_sharing_strategy('file_system')
# GreedyHash(NIPS2018)
# paper [Greedy Hash: Towards Fast Optimization for Accurate Hash Coding in CNN](https://papers.nips.cc/paper/7360-greedy-hash-towards-fast-optimization-for-accurate-hash-coding-in-cnn.pdf)
# code [GreedyHash](https://github.com/ssppp/GreedyHash)
eps = 1e-8
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--grad_est", help = 'Gradient Estimator for Discrete Latent', type = str, default = 'st')
parser.add_argument("--u2g_samples", help = 'Number of u2g samples', type = int, default = 100)
parser.add_argument("--KL_regularization", help = 'scalar to tradeoff likelihood term and KL term', type = float, default = 0)
parser.add_argument("--prior", help = 'prior Bernoulli success probability', type = float, default = 0.5)
parser.add_argument("--st_pretrain", help = 'Number of epochs pretrain with ST (Valid for U2G for now)', type = int, default = 0)
parser.add_argument('--pairwise', action='store_true')
parser.add_argument('--no-pairwise', dest='pairwise', action='store_false')
parser.set_defaults(pairwise=False)
parser.add_argument('--dataset', type = str, default="imagenet", help = " ")
parser.add_argument('--rt_st', type = str, default = "ham", help = "Retrieval Stratege, \"ham\" or \"hamuct\"")
parser.add_argument('--val', action='store_true')
parser.add_argument('--no-val', dest='val', action='store_false')
parser.add_argument("--train", action = 'store_true')
parser.add_argument('--no-train', dest='train', action='store_false')
parser.set_defaults(train=True)
parser.add_argument('--sample', type = int, default = 1)
parser.add_argument('--sample_method', type = str, default = "MCD") #MCD: MC Dropout, IGN: Input Gaussian Noise
parser.set_defaults(val=False)
parser.add_argument('--tqdm', action='store_true')
parser.add_argument('--no-tqdm', dest='tqdm', action='store_false')
parser.add_argument('--uct_quant_level', type = int, default = 0, help = "Quantization level of uncertainty, 0=No Quant")
parser.add_argument('--eps', type = float, default = 1e-100)
parser.set_defaults(tqdm=False)
args = parser.parse_args()
print('Arguments:', args)
return args
def get_config():
config = {
"alpha": 0.1,
"optimizer": {"type": optim.SGD, "epoch_lr_decrease": 30,
"optim_params": {"lr": 0.001, "weight_decay": 5e-4, "momentum": 0.9}},
# "optimizer": {"type": optim.Adam, "epoch_lr_decrease": 30,
# "optim_params": {"lr": 0.001, "weight_decay": 5e-4}},
# "optimizer": {"type": optim.RMSprop, "epoch_lr_decrease": 30,
# "optim_params": {"lr": 5e-5, "weight_decay": 5e-4}},
"info": "[GreedyHash]",
"resize_size": 256,
"crop_size": 224,
"batch_size": 64,
"net": AlexNet,
# "net":ResNet,
# "dataset": "cifar10",
# "dataset": "cifar10-1",
# "dataset": "cifar10-2",
# "dataset": "coco",
# "dataset": "mirflickr",
# "dataset": "voc2012",
"dataset": "imagenet",
# "dataset": "nuswide_21",
# "dataset": "nuswide_21_m",
# "dataset": "nuswide_81_m",
"epoch": 100,
"test_map": 100,
# "device":torch.device("cpu"),
"device": torch.device("cuda:0"),
"bit_list": [16],
"seed": 0,
# "grad_est": "u2g" #gs, u2g, st, debug
}
# config = config_dataset(config)
return config
class GreedyHashLoss(torch.nn.Module):
def __init__(self, config, bit):
super(GreedyHashLoss, self).__init__()
self.fc = torch.nn.Linear(bit, config["n_class"], bias=False).to(config["device"])
self.criterion = torch.nn.CrossEntropyLoss().to(config["device"])
self.Sigmoid = torch.nn.Sigmoid()
def forward(self, u, onehot_y, ind, config):
#Sigmoid layer
# u = 2*self.Sigmoid(u) - 1
prob = torch.sigmoid(u)
if config["grad_est"] == 'st':
b = 2 * GreedyHashLoss.Sample_Bernoulli.apply(prob) - 1
elif config["grad_est"] == 'gs':
b = 2 * self.Sample_GS(prob, config) - 1
elif config["grad_est"] == 'u2g':
b = 2 * GreedyHashLoss.Sample_Bernoulli.apply(prob) - 1
elif config["grad_est"] == 'debug':
print('Prob:', prob)
b = 2 * self.Sample_GS(prob, config) - 1
# one-hot to label
y = onehot_y.argmax(axis=1)
y_pre = self.fc(b)
loss1 = self.criterion(y_pre, y)
# loss2 = config["alpha"] * (u.abs() - 1).pow(3).abs().mean()
# print('loss_1', loss1)
return loss1
def f_function(self, b, onehot_y):
y = onehot_y.argmax(axis=1)
y_pre = self.fc(b)
loss1 = self.criterion(y_pre, y)
# print('loss_2', loss1)
return loss1
def estimate_grad(self, u, onehot_y, ind, config):
batch_size, bit_length = u.size()
#num_sample,batch_size, bit_length
sample_u = torch.rand((config["u2g_samples"], batch_size, bit_length)).to(config["device"])
# print('unif rv',sample_u.size())
Score2 = torch.sigmoid(u)
Score1 = 1 - Score2
# print('Score 1', Score1.size())
# print('Score 2', Score2.size())
Indicator1 = (sample_u>Score1).float()
Indicator2 = (sample_u<Score2).float()
# print('Ind 1',Indicator1.size())
# print('Ind 2',Indicator2.size())
loss_1 = []
loss_2 = []
for i in range(config["u2g_samples"]):
loss_1.append(self.f_function(2 * Indicator1[i] - 1, onehot_y))
loss_2.append(self.f_function(2 * Indicator2[i] - 1, onehot_y))
loss_1 = torch.as_tensor(loss_1).to(config["device"])
loss_2 = torch.as_tensor(loss_2).to(config["device"])
# print('loss_1', loss_1.size())
# print('loss 2', loss_2.size())
# print('loss2 - loss1', (loss_1 - loss_2).unsqueeze(1).unsqueeze(2).repeat(1, batch_size, bit_length).size())
# print('loss_1', loss_1.size())
# print('loss_2', loss_2.size())
grad_u2g = torch.mean(torch.sigmoid(torch.abs(u))*(loss_1 - loss_2).unsqueeze(1).unsqueeze(2).repeat(1, batch_size, bit_length)*(Indicator1 - Indicator2)/2, dim = 0)
# grad_arm = (loss_1 - loss_2).unsqueeze(0).unsqueeze(1).repeat(batch_size, bit_length)*(sample_u - 1/2)
# print('Grad U2G', grad_u2g.size())
# print('Grad ARM', grad_arm.size())
return grad_u2g.detach()
def Sample_GS(self, prob, config, lam = 0.5):
size = prob.size()
u = torch.rand(size).to(config['device'])
alpha = (prob + eps)/(1 - prob + eps)
L = torch.log(u) - torch.log(1 - u)
bb = torch.sigmoid((torch.log(alpha) + L)/lam)
return bb
def estimate_loss(self, u, onehot_y, ind, config):
#Estimate the cls loss by sampling the latent
prob = torch.sigmoid(u)
b = 2 * GreedyHashLoss.Sample_Bernoulli.apply(prob) - 1
y = onehot_y.argmax(axis=1)
y_pre = self.fc(b)
loss1 = self.criterion(y_pre, y)
return loss1
class Hash(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
# ctx.save_for_backward(input)
return input.sign()
@staticmethod
def backward(ctx, grad_output):
# input, = ctx.saved_tensors
# grad_output = grad_output.data
return grad_output
class Sample_Bernoulli(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
code = torch.bernoulli(input)
return code
@staticmethod
def backward(ctx, grad_output):
return grad_output
def train_val(config, bit):
device = config["device"]
random.seed(config["seed"])
np.random.seed(config["seed"])
torch.manual_seed(config["seed"])
if not config["tqdm"]:
tqdm.__init__ = partialmethod(tqdm.__init__, disable=True)
save_path = os.path.join(".", "saved_model", "BerVAE_Greedy_bit_%i_dataset_%s_opt_%s_u2gsample_%i_KL_%.2f" %(bit, config["dataset"], config["grad_est"], config["u2g_samples"], config["KL_regularization"]))
print("save_path", save_path)
config["save_path"] = save_path
if not os.path.exists(os.path.join(".", "saved_model")):
os.mkdir(os.path.join(".", "saved_model"))
if not os.path.exists(save_path):
os.mkdir(save_path)
training_loss_list = []
val_loss_list = []
map_list = []
torch.set_printoptions(sci_mode = True)
# train_loader, test_loader, dataset_loader, num_train, num_test, num_dataset = get_data(config)
if config["val"] == True:
train_loader, val_loader, test_loader, dataset_loader, num_train, num_val, num_test, num_dataset = get_data(config)
else:
train_loader, test_loader, dataset_loader, num_train, num_test, num_dataset = get_data(config)
config["num_train"] = num_train
net = config["net"](bit).to(device)
criterion = GreedyHashLoss(config, bit)
optimizer_net = config["optimizer"]["type"](list(net.parameters()), **(config["optimizer"]["optim_params"]))
optimizer_criterion = config["optimizer"]["type"](list(criterion.parameters()), **(config["optimizer"]["optim_params"]))
Best_mAP = 0
if config["train"] == True:
for epoch in range(config["epoch"]):
lr = config["optimizer"]["optim_params"]["lr"] * (0.1 ** (epoch // config["optimizer"]["epoch_lr_decrease"]))
for param_group in optimizer_net.param_groups:
param_group['lr'] = lr
for param_group in optimizer_criterion.param_groups:
param_group['lr'] = lr
current_time = time.strftime('%H:%M:%S', time.localtime(time.time()))
print("%s[%2d/%2d][%s] bit:%d, lr:%.9f, dataset:%s, training...." % (
config["info"], epoch + 1, config["epoch"], current_time, bit, lr, config["dataset"]), end="")
net.train()
train_loss = 0
for image, label, ind in train_loader:
image = image.to(device)
label = label.to(device)
optimizer_net.zero_grad()
optimizer_criterion.zero_grad()
u = net(image)
prob = torch.sigmoid(u)
# if epoch > 5:
# print('Bernoulli Prob', prob)
loss = criterion(u, label.float(), ind, config)
KL = torch.sum((prob*torch.log(torch.div(prob, config["prior"]) + eps) + (1 - prob)*torch.log(torch.div(1- prob, 1 - config["prior"]) + eps)))/(config['batch_size']*bit)
KL_loss = config["KL_regularization"]*KL
# print('KL', KL)
train_loss += loss.item()
if config["grad_est"] in ['st', 'gs']:
u_grad = criterion.estimate_grad(u, label.float(), ind, config)
loss.backward(retain_graph = True)
KL_loss.backward()
optimizer_criterion.step()
optimizer_net.step()
elif config["grad_est"] == 'u2g':
# print("u_grad:", u_grad)
if epoch < config["st_pretrain"]:
u_grad = criterion.estimate_grad(u, label.float(), ind, config)
loss.backward(retain_graph = True)
KL_loss.backward()
optimizer_criterion.step()
optimizer_net.step()
else:
loss.backward(retain_graph = True)
optimizer_criterion.step()
optimizer_net.zero_grad()
optimizer_criterion.zero_grad()
# u_grad = criterion.estimate_grad(u, label.float(), ind, config)
u_grad = []
# for i in range(config["u2g_samples"]):
# u_grad.append(criterion.estimate_grad(u, label.float(), ind, config))
# u_grad_avg = sum(u_grad)/len(u_grad)
u_grad = criterion.estimate_grad(u, label.float(), ind, config)
u.backward(u_grad.detach(), retain_graph = True)
KL_loss.backward()
optimizer_net.step()
elif config["grad_est"] == 'debug':
u.retain_grad() #Save the gradient of u
u_grad = []
for i in range(100):
u_grad.append(criterion.estimate_grad(u, label.float(), ind, config))
u_grad_avg = sum(u_grad)/len(u_grad)
loss.backward()
print("u2g_grad:", u_grad_avg)
print("gs grad:", u.grad)
print("cosine between gs and u2g:", torch.nn.functional.cosine_similarity(u_grad_avg, u.grad, dim = 1))
optimizer_criterion.step()
optimizer_net.step()
train_loss = train_loss / len(train_loader)
print("\b\b\b\b\b\b\b loss:%.3f KL:%.3e" % (train_loss, KL))
if (epoch + 1) % config["test_map"] == 0:
if config["val"] == True:
Best_mAP, mAP = self_validate(config, Best_mAP, val_loader, net, bit, epoch, num_val, return_map = True)
else:
Best_mAP, mAP = validate(config, Best_mAP, test_loader, dataset_loader, net, bit, epoch, num_dataset, return_map = True)
val_loss = 0
if config["val"] == True:
with torch.no_grad():
for data in val_loader:
(image, label, ind) = data
image = image.to(device)
label = label.to(device)
u = net(image)
loss = criterion.estimate_loss(u, label.float(), ind, config)
val_loss += loss.item()
val_loss = val_loss / len(val_loader)
torch.save(net.state_dict(), os.path.join(save_path, "epoch_%i.pth" %(epoch)))
val_loss_list.append(val_loss)
map_list.append(mAP)
# net.eval()
# train_loss = 0
# for image, label, ind in train_loader:
# image = image.to(device)
# label = label.to(device)
# u = net(image)
# loss = criterion.estimate_loss(u, label.float(), ind, config)
# train_loss += loss.item()
# train_loss = train_loss / len(train_loader)
# training_loss_list.append(train_loss)
# map_list.append(mAP)
# net.train()
#Save Model and Hash-Code
else:
map_list = pd.read_csv(os.path.join(save_path, "map.csv"))["0"]
Best_Epoch = (np.argmax(map_list) + 1)*config["test_map"]
Best_Model_Path = os.path.join(save_path, "epoch_%i.pth" %(Best_Epoch - 1))
net.load_state_dict(torch.load(Best_Model_Path))
Best_mAP = 0
Best_mAP, mAP = validate(config, Best_mAP, test_loader, dataset_loader, net, bit, Best_Epoch - 1, num_dataset, return_map = True)
if config["train"] == True:
# pd.DataFrame(training_loss_list).to_csv(os.path.join(save_path, "train_loss.csv"))
pd.DataFrame(map_list).to_csv(os.path.join(save_path, "map.csv"))
pd.DataFrame(training_loss_list).to_csv(os.path.join("./","val_loss_bit_%i_optimizer_%s_u2gsample_%i.csv" %(bit, config["grad_est"], config["u2g_samples"])))
pd.DataFrame(map_list).to_csv(os.path.join("./", "map_bit_%i_optimizer_%s_u2gsample_%i.csv"%(bit, config["grad_est"], config["u2g_samples"])))
if __name__ == "__main__":
config = get_config()
print(config)
args = get_args()
config.update(vars(args))
config = config_dataset(config)
if config["dataset"] == "imagenet":
config["alpha"] = 1
config["optimizer"]["epoch_lr_decrease"] = 80
for bit in config["bit_list"]:
train_val(config, bit)