This repository has been archived by the owner on Nov 28, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMobileNetV2.py
138 lines (121 loc) · 5.48 KB
/
MobileNetV2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
"""
MobileNetV2
MobileNet architecture is built with the idea to make neural networks feasible on mobile devices.
MobileNet introduces the idea of depthwise separable convolution, which is depthwise conv followed
by pointwise conv.
What's New
With MobileNetV2, the architecture introduces the concept of inverted residual, where the residual
connections are made between the bottleneck layers. The intermediate expansion layer uses lightweight
depthwise convolutions to filter features as a source of non-linearity.
A traditional Residual Block has a wide -> narrow -> wide structure with the number of channels. The
input has a high number of channels, which are compressed with a 1x1 convolution. The number of
channels is then increased again with a 1x1 convolution so input and output can be added.
In contrast, an Inverted Residual Block follows a narrow -> wide -> narrow approach, hence the inversion.
We first widen with a 1x1 convolution, then use a 3x3 depthwise convolution (which greatly reduces the
number of parameters), then we use a 1x1 convolution to reduce the number of channels so input and output
can be added.
"""
import torch.nn as nn
import numpy as np
import math
def conv3x3(input_channel, output_channel, stride):
return nn.Sequential(
nn.Conv2d(input_channel, output_channel, 3, stride, 1, bias=False),
nn.BatchNorm2d(output_channel),
nn.ReLU6(inplace=True)
)
def conv1x1(input_channel, output_channel):
return nn.Sequential(
nn.Conv2d(input_channel, output_channel, 1, 1, 0, bias=False),
nn.BatchNorm2d(output_channel),
nn.ReLU6(inplace=True)
)
def make_divisible(x, divisible_by=8):
return int(np.ceil(x * 1. / divisible_by) * divisible_by)
class InvertedResidual(nn.Module):
def __init__(self, input_channel, out_channel, stride, expand_ratio):
super().__init__()
assert stride in [1, 2], 'Stride value is greater than 2'
hidden_dimension = round(input_channel * expand_ratio)
self.identity = stride == 1 and input_channel == out_channel
if expand_ratio == 1:
self.conv = nn.Sequential(
#depthwise convolution
nn.Conv2d(hidden_dimension, hidden_dimension, 3, stride, 1, groups=hidden_dimension, bias=False),
nn.BatchNorm2d(hidden_dimension),
nn.ReLU6(inplace=True),
#pointwise linear
nn.Conv2d(hidden_dimension, out_channel, 1, 1, 0, bias=False),
nn.BatchNorm2d(out_channel)
)
else:
self.conv = nn.Sequential(
# pointwise conv
nn.Conv2d(input_channel, hidden_dimension, 1, 1, 0, bias=False),
nn.BatchNorm2d(hidden_dimension),
nn.ReLU6(inplace=True),
# depthwise conv
nn.Conv2d(hidden_dimension, hidden_dimension, 3, stride, 1, groups=hidden_dimension, bias=False),
nn.BatchNorm2d(hidden_dimension),
nn.ReLU6(inplace=True),
# pointwise-linear
nn.Conv2d(hidden_dimension, out_channel, 1, 1, 0, bias=False),
nn.BatchNorm2d(out_channel),
)
def forward(self, x):
if self.identity:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV2(nn.Module):
def __init__(self, input_channel=1, n_classes=10, width_multipler=1.0):
super(MobileNetV2, self).__init__()
block = InvertedResidual
first_channel = 32
last_channel = 1280
# setting of inverted residual blocks
self.cfgs = [
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1],
]
self.last_channel = make_divisible(last_channel * width_multipler) if width_multipler > 1.0 else last_channel
self.features = [conv3x3(input_channel, first_channel, 2)]
for t, c, n, s in self.cfgs:
output_channel = make_divisible(c * width_multipler) if t > 1 else c
for i in range(n):
if i == 0:
self.features.append(block(first_channel, output_channel, s, expand_ratio=t))
else:
self.features.append(block(first_channel, output_channel, 1, expand_ratio=t))
first_channel = output_channel
# building last several layers
self.features.append(conv1x1(first_channel, self.last_channel))
# make it nn.Sequential
self.features = nn.Sequential(*self.features)
# building classifier
self.classifier = nn.Linear(self.last_channel, n_classes)
self._initialize_weights()
def forward(self, x):
x = self.features(x)
x = x.mean(3).mean(2)
x = self.classifier(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()