-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathface_detection_and_crop.cpp
600 lines (560 loc) · 22.7 KB
/
face_detection_and_crop.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
// Revision history:
// [20151119_Curtis] 1. normalize and crop face images for gender classfication
// 2. use uniform LBP and SVM to train gender classfier
// [20151120_Curtis] show menu for user to select one of the following three functions: a). face detection and cropping, b). training, and c). prediction
// [20151123_Curtis] add the 4th function to do gender classification for video input
// [20151209_Curtis] remove the 3rd function which predicts gender from a list of files
// [20151216_Curtis] add facial landmark tracking to improve the stability of face detection
#include <opencv2/objdetect/objdetect.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv/cv.h>
#include <iostream>
#include <stdio.h>
#include <fstream>
#include <dlib/image_processing.h>
#include <dlib/opencv.h>
#include <dlib/image_transforms.h>
#include "LbpSvm.h"
#include "FaceProcessing.h"
//#include "OpenNiWrapper.h"
#define USE_HISTO_EQUAL
void FeatureSelectionUseBoost()
{
// ---------------------------------
// simply test for feature selection
// ---------------------------------
// the ground truth is x^2 + y^2 - 25 >= 0
// sample space is a 20-by-20 rectangle
const int trainingDataNum = 47980; // the more accurate classifier will be found with more training data
cv::Mat trainingData(trainingDataNum, 3, CV_32F); // 32-bit floating
cv::Mat response(trainingDataNum, 1, CV_32S); // signed integer
srand(time(NULL));
for (int j = 0; j < trainingData.rows; j++)
{
const float x = (rand() % 201 - 100.0F) / 10.0F;
const float y = (rand() % 201 - 100.0F) / 10.0F;
trainingData.at<float>(j, 0) = x;
trainingData.at<float>(j, 1) = y;
// noise
const float z = (rand() % 21 - 10.0F) / 10.F;
trainingData.at<float>(j, 2) = z;
// reponse
response.at<int>(j, 0) = ((x*x + y*y - 25 >= 0) ? 1 : -1);
}
// training
cv::Boost model;
printf("Start training boost\n");
model.train(trainingData, CV_ROW_SAMPLE, response, cv::Mat(), cv::Mat(), cv::Mat(), cv::Mat(), CvBoostParams(CvBoost::GENTLE, 100, 0.95, 5, false, 0));
// show result
cv::Mat result(200, 200, CV_8UC3);
for (int j = 0; j < result.rows; j++)
{
for (int i = 0; i < result.cols; i++)
{
cv::Mat testData(1, 3, CV_32F);
const float x = (i - result.cols / 2.0F) / 10.0F;
const float y = (j - result.rows / 2.0F) / 10.0F;
testData.at<float>(0, 0) = x;
testData.at<float>(0, 1) = y;
testData.at<float>(0, 2) = 0.0F;
float label = model.predict(testData);
if (label == 1)
{
result.at<cv::Vec3b>(j, i)[0] = 255;
result.at<cv::Vec3b>(j, i)[1] = 0;
result.at<cv::Vec3b>(j, i)[2] = 0;
}
else
{
result.at<cv::Vec3b>(j, i)[0] = 0;
result.at<cv::Vec3b>(j, i)[1] = 0;
result.at<cv::Vec3b>(j, i)[2] = 255;
}
}
}
cv::circle(result, cv::Point(100, 100), 50, CV_RGB(0, 255, 0));
cv::imshow("result", result);
// compute which features are more important
printf("Find weak predictor\n");
printf("Number of trees: %d\n", model.get_weak_predictors()->total);
CvSeq* weak = model.get_weak_predictors();
CvSeqReader reader;
cvStartReadSeq(weak, &reader);
cvSetSeqReaderPos(&reader, 0);
std::vector<int> featureVote(3);
for (int i = 0; i < weak->total; i++)
{
printf("aaaaa\n");
CvBoostTree* wtree;
CV_READ_SEQ_ELEM(wtree, reader);
cv::Mat VarImportance = wtree->get_var_importance();
std::cout << VarImportance.row(0) << std::endl;
int cols = VarImportance.cols;
double max_importance = 0;
int importance_idx;
for (int j = 0; j < cols; j++){
if (VarImportance.at<double>(0, j) * 10000 > max_importance){
max_importance = VarImportance.at<double>(0, j) * 10000;
importance_idx = j;
}
}
//std::cout << VarImportance.row(0) <<" type "<<VarImportance.type()<< std::endl;
//printf("fcukme %f ,%f ,%f \n", VarImportance.at<double>(0, 0) * 1000, VarImportance.at<double>(0, 1) * 1000, VarImportance.at<double>(0, 2) * 1000);
const CvDTreeNode* node = wtree->get_root();
CvDTreeSplit* split = node->split;
//int index = split->condensed_idx;
int index = split->var_idx;
featureVote[index]++;
printf("%d, %d, %d\n", split->condensed_idx, split->var_idx, importance_idx);
}
printf("Vote: %d, %d, %d\n", featureVote[0], featureVote[1], featureVote[2]);
// remove the weak classifiers which use the least important fature (we always remove the last feature in this simulation)
weak = model.get_weak_predictors();
cvStartReadSeq(weak, &reader);
cvSetSeqReaderPos(&reader, 0);
for (int i = 0; i < weak->total; i++)
{
CvBoostTree* wtree;
CV_READ_SEQ_ELEM(wtree, reader);
const CvDTreeNode* node = wtree->get_root();
CvDTreeSplit* split = node->split;
const int index = split->condensed_idx;
// 1). remove all weak classifiers except the first one
//if (i > 0)
//{
// model.prune(cvSlice(i, i + 1));
// i--;
//}
// 2). remove the weakest classifiers
if (index == 2)
{
model.prune(cvSlice(i, i + 1));
i--;
}
}
// show result after pruning
cv::Mat resultPrune(200, 200, CV_8UC3);
for (int j = 0; j < resultPrune.rows; j++)
{
for (int i = 0; i < resultPrune.cols; i++)
{
cv::Mat testData(1, 3, CV_32F);
const float x = (i - resultPrune.cols / 2.0F) / 10.0F;
const float y = (j - resultPrune.rows / 2.0F) / 10.0F;
testData.at<float>(0, 0) = x;
testData.at<float>(0, 1) = y;
testData.at<float>(0, 2) = 0.0F;
float label = model.predict(testData);
if (label == 1)
{
resultPrune.at<cv::Vec3b>(j, i)[0] = 255;
resultPrune.at<cv::Vec3b>(j, i)[1] = 0;
resultPrune.at<cv::Vec3b>(j, i)[2] = 0;
}
else
{
resultPrune.at<cv::Vec3b>(j, i)[0] = 0;
resultPrune.at<cv::Vec3b>(j, i)[1] = 0;
resultPrune.at<cv::Vec3b>(j, i)[2] = 255;
}
}
}
cv::circle(resultPrune, cv::Point(100, 100), 50, CV_RGB(0, 255, 0));
cv::imshow("resultPrune", resultPrune);
// show
cv::waitKey();
return;
}
int main(int argc, const char** argv)
{
//FeatureSelectionUseBoost();
//return 0;
// show menu
printf("--------------------------------------\n");
printf("Select one of the following functions:\n");
printf("[1] face detection and cropping\n");
printf("[2] gender classifier training\n");
printf("[3] gender classification (video)\n");
printf("--------------------------------------\n");
char key = getchar();
// ---------------------------
// face detection and cropping
// ---------------------------
if (key == '1')
{
// modify this for different database
std::ifstream fileIndex("D:/face_detection/positive_database/lfw/faceImgList.csv");
// load the cascades and landmark model
CFaceProcessing fp("D:/Software/opencv/sources/data/lbpcascades/lbpcascade_frontalface.xml",
"D:/Software/opencv/sources/data/haarcascades/haarcascade_mcs_nose.xml",
"D:/Software/opencv/sources/data/haarcascades/haarcascade_mcs_mouth.xml",
"D:/Vision_Project/shape_predictor_68_face_landmarks.dat");
// load trained SVM
CLbpSvm lbpSvm("./svm.model", "./MinMax.csv");
// read next image until no image can be read
while (!fileIndex.eof())
{
char faceImgName[256] = { 0 };
fileIndex.getline(faceImgName, 256);
printf("%s\n", faceImgName);
cv::Mat img = cv::imread(faceImgName);
// face detection
std::vector<cv::Rect> faces;
int faceNum= fp.FaceDetection(img);
cv::Mat croppedImg;
if (faceNum > 0)
{
faces = fp.GetFaces();
// normalize the largest face image with landmark
int facelargestIdx = fp.GetLargestFace();
if (facelargestIdx >= 0)
{
std::vector<cv::Mat> largestNormalizedImg;
fp.AlignFaces2D(largestNormalizedImg, true);
// crop and show the cropped face
float gender = 0.0;
if (largestNormalizedImg.empty() == false)
{
largestNormalizedImg[0].copyTo(croppedImg);
#ifdef USE_HISTO_EQUAL
cv::equalizeHist(croppedImg, croppedImg);
#endif
cv::imshow("largest cropped image", croppedImg);
gender = lbpSvm.Predict(croppedImg);
}
// show detected faces and the original image
for (unsigned int i = 0; i < faces.size(); i++)
{
cv::rectangle(img, faces[i], CV_RGB(180, 180, 180), 2);
}
// show gender of the largest face
//if (gender > 0.0) cv::rectangle(img, faces[facelargestIdx], CV_RGB(0, 0, 255), 2);
//else if (gender < 0.0) cv::rectangle(img, faces[facelargestIdx], CV_RGB(255, 0, 0), 2);
float absResult = abs(gender);
if (abs(gender) >= 0.002) // 0.001 ~ 0.002
{
if (gender <= 0)
{
cv::rectangle(img, faces[facelargestIdx], CV_RGB(0, 0, 255), 2); // male
}
else
{
cv::rectangle(img, faces[facelargestIdx], CV_RGB(255, 0, 0), 2); // female
}
}
// debug - show faces with low confidence of gender classification
else
{
cv::rectangle(img, faces[facelargestIdx], CV_RGB(200, 200, 200), 2);
}
//
printf("Gender confidence = %f\n", gender);
}
cv::imshow(faceImgName, img);
// key processing
int key = cv::waitKey(0);
if (key == 27) break;
else if (key == 102) // 'f' for female
{
char faceGenderImgName[256] = { 0 };
memcpy(faceGenderImgName, faceImgName, 256 * sizeof(char));
int strLen = strlen(faceGenderImgName);
memcpy(&faceGenderImgName[strLen - 4], "_female.bmp", 11 * sizeof(char));
if (croppedImg.empty() == false) cv::imwrite(faceGenderImgName, croppedImg);
}
else if (key == 109) // 'm' for male
{
char faceGenderImgName[256] = { 0 };
memcpy(faceGenderImgName, faceImgName, 256 * sizeof(char));
int strLen = strlen(faceGenderImgName);
memcpy(&faceGenderImgName[strLen - 4], "_male.bmp", 9 * sizeof(char));
if (croppedImg.empty() == false) cv::imwrite(faceGenderImgName, croppedImg);
}
cv::destroyAllWindows();
}
}
}
// --------------------------
// gender classifier training
// --------------------------
else if (key == '2')
{
CLbpSvm lbpSvm;
//lbpSvm.Train("D:/face_detection/positive_database/lfw_cropped_face/maleImgList.csv", "D:/face_detection/positive_database/lfw_cropped_face/femaleImgList.csv", "./svm.model");
//[20160104_Sylar]
bool flag = lbpSvm.STrain("C:/Users/TB560074/Desktop/lfw_cropped_face/maleImgList.csv", "C:/Users/TB560074/Desktop/lfw_cropped_face/femaleImgList.csv", "./SvmBoostMScale.model");
if (!flag)
printf("Train failed\n");
}
// -----------------------------
// gender classification (video)
// -----------------------------
else if (key == '3')
{
// load SVM model
//[20160104_Sylar]
//CLbpSvm lbpSvm("./Test/svm.model", "./Test/MinMax.csv");
CLbpSvm lbpSvm("./Test/SvmBoostMScale.model", "./Test/MinMax.csv");
// use camera, ASUS xtion, or video as input source
//cv::VideoCapture cap(0);
//COpenNiWrapper openNiWrapper;
cv::VideoCapture cap("C:/Users/TB560074/Desktop/face_detection_and_crop/Backstreet.mp4");
if (!cap.isOpened()) return -1;
// load the cascades
/*CFaceProcessing fp("D:/Software/opencv/sources/data/lbpcascades/lbpcascade_frontalface.xml",
"D:/Software/opencv/sources/data/haarcascades/haarcascade_mcs_nose.xml",
"D:/Software/opencv/sources/data/haarcascades/haarcascade_mcs_mouth.xml",
"D:/Vision_Project/shape_predictor_68_face_landmarks.dat");*/
//[20160104_Sylar]
CFaceProcessing fp("C:/Program Files/opencv/sources/data/lbpcascades/lbpcascade_frontalface.xml",
"C:/Program Files/opencv/sources/data/haarcascades/haarcascade_mcs_nose.xml",
"C:/Program Files/opencv/sources/data/haarcascades/haarcascade_mcs_mouth.xml",
"C:/Users/TB560074/Desktop/face_detection_and_crop/face_detection_and_crop/shape_predictor_68_face_landmarks.dat");
// main loop
cv::Mat img;
bool showLandmark = false;
bool showCroppedFaceImg = false;
cv::Mat grayFrame;
cv::Mat grayFramePrev;
std::vector<std::vector<cv::Point>> fLandmarksPrev;
std::vector<std::vector<cv::Point>> fLandmarks;
std::vector<unsigned char> faceStatusPrev;
std::vector<float> accGenderConfidencePrev;
float totalCount = 0;
float falseCount = 0;
std::vector<cv::Mat> prevCropped;
while (1)
{
//openNiWrapper.GetDepthColorRaw();
//openNiWrapper.ConvertDepthColorRawToImage(cv::Mat(), img);
cap >> img;
if (img.empty()) break;
// (optional) backup original image for offline debug
cv::Mat originImg(img.size(), img.type());
img.copyTo(originImg);
// time calculation
unsigned long sTime = clock();
unsigned long eTime = clock();
// --------------
// face detection
// --------------
std::vector<cv::Rect> faces;
int faceNum = fp.FaceDetection(img);
std::vector<cv::Mat> croppedImgs;
if (faceNum > 0)
{
faces = fp.GetFaces();
// normalize the face image with landmark
std::vector<cv::Mat> normalizedImg;
fp.AlignFaces2D(normalizedImg);
// ----------------------------------------
// crop faces and do histogram equalization
// ----------------------------------------
croppedImgs.resize(faceNum);
for (int i = 0; i < faceNum; i++)
{
cv::Mat temp;
normalizedImg[i].copyTo(croppedImgs[i]);
#ifdef USE_HISTO_EQUAL
//cv::equalizeHist(croppedImgs[i], croppedImgs[i]);
#endif
}
// ---------------------------------
// extraction landmarks on each face
// ---------------------------------
fLandmarks.resize(faceNum);
for (int i = 0; i < faceNum; i++)
{
fLandmarks[i] = fp.GetLandmarks(i);
}
}
// (debug) show no face
//else
//{
// printf("Detect no face\n\n");
//}
// ----------------------
// track facial landmarks
// ----------------------
grayFrame = fp.GetGrayImages();
std::vector<std::pair<int, int>> trackFromTo;
if (grayFramePrev.empty() == false && fLandmarksPrev.size() != 0) // do tracking when the current frame is not the first one
{
std::vector<cv::Point2f> ptsPrev;
std::vector<cv::Point2f> pts;
// 2d vector to 1d vector
for (unsigned int i = 0; i < fLandmarksPrev.size(); i++)
{
ptsPrev.insert(ptsPrev.end(), fLandmarksPrev[i].begin(), fLandmarksPrev[i].end());
}
std::vector<unsigned char> status;
std::vector<float> err;
cv::calcOpticalFlowPyrLK(grayFramePrev, grayFrame, ptsPrev, pts, status, err);
// (debug) show tracked facial landmarks
//for (unsigned int i = 0; i < pts.size(); i++)
//{
// cv::circle(img, pts[i], 1, CV_RGB(255, 255, 255));
//}
// check if the tracked facial landmarks are located in a certain face
int offset = 0;
for (unsigned int i = 0; i < fLandmarksPrev.size(); i++)
{
// previous frame --> current frame
// i --> faceIdx
int faceIdx = fp.FindLandmarksWhichFaces(pts.begin() + offset, fLandmarksPrev[i].size());
if (faceIdx != -1)
{
fp.IncFaceStatus(faceIdx, (int)faceStatusPrev[i]);
trackFromTo.push_back(std::pair<int, int>(i, faceIdx));
}
offset += fLandmarksPrev[i].size();
}
}
// ----------------------------
// (debug) show faces and count
// ----------------------------
//if (faceNum > 0)
//{
// faces = fp.GetFaces();
// std::vector<unsigned char> status = fp.GetFaceStatus();
// for (int i = 0; i < faceNum; i++)
// {
// if (status[i])
// {
// cv::rectangle(img, faces[i], CV_RGB(200, 200, 200), 2); // face with eyes
// cv::putText(img, std::to_string((int)status[i]), cv::Point(faces[i].x + faces[i].width / 2, faces[i].y + faces[i].height / 2), 1, cv::FONT_HERSHEY_COMPLEX, CV_RGB(0, 0, 0), 2);
// }
// else
// {
// cv::rectangle(img, faces[i], CV_RGB(50, 50, 50), 2); // face with eyes
// cv::putText(img, std::to_string((int)status[i]), cv::Point(faces[i].x + faces[i].width / 2, faces[i].y + faces[i].height / 2), 1, cv::FONT_HERSHEY_COMPLEX, CV_RGB(0, 0, 0), 2);
// }
// }
//}
// --------------------------------------------
// do gender classification and display results
// --------------------------------------------
std::vector<unsigned char> status = fp.GetFaceStatus();
for (int i = 0; i < faceNum; i++)
{
if (status[i])
{
float result = lbpSvm.Predict(croppedImgs[i]);
// display face and gender
float absResult = abs(result);
// show faces when the current confidence is high enough
if (absResult >= 0.001) // 0.001 ~ 0.002
{
totalCount++;
if (result <= 0) // male
{
char beliefStr[64] = { 0 };
sprintf(beliefStr, "%f", absResult);
cv::putText(img, beliefStr, cv::Point(faces[i].x, faces[i].y + faces[i].height + 30), cv::FONT_HERSHEY_COMPLEX, 0.5, CV_RGB(0, 0, 255));
cv::rectangle(img, faces[i], CV_RGB(0, 0, 255), 2); // male
}
else // female
{
char beliefStr[64] = { 0 };
sprintf(beliefStr, "%f", absResult);
cv::putText(img, beliefStr, cv::Point(faces[i].x, faces[i].y + faces[i].height + 30), cv::FONT_HERSHEY_COMPLEX, 0.5, CV_RGB(255, 0, 0));
cv::rectangle(img, faces[i], CV_RGB(255, 0, 0), 2); // female
falseCount++;
/*cv::imshow("FALSE", croppedImgs[i]);
for (int it = 0; it < (int)prevCropped.size(); it++)
cv::imshow(std::to_string(it), prevCropped[it]);
cv::waitKey();*/
}
}
// -----------------------------
// (debug) show facial landmarks
// -----------------------------
if (showLandmark == true)
{
for (int i = 0; i < faceNum; i++)
{
if (status[i])
{
for (unsigned int j = 0; j < fLandmarks[i].size(); j++)
{
cv::circle(img, fLandmarks[i][j], 1, CV_RGB(255, 255, 255), 1);
}
}
}
}
// --------------------------------
// (debug) show cropped face images
// --------------------------------
if (showCroppedFaceImg == true)
{
for (int i = 0; i < faceNum; i++)
{
if (status[i])
{
cv::imshow(std::to_string(i), croppedImgs[i]);
}
}
}
}
}
//-------------------------------------
// For false classification's prev face
//-------------------------------------
prevCropped.clear();
prevCropped.resize(faceNum);
for (int i = 0; i < faceNum; i++){
croppedImgs[i].copyTo(prevCropped[i]);
}
// ----------------------------------------------------
// current data will be previous data in the next frame
// ----------------------------------------------------
if (faceNum > 0)
{
grayFrame.copyTo(grayFramePrev);
fLandmarksPrev.resize(fLandmarks.size());
for (unsigned int i = 0; i < fLandmarks.size(); i++)
{
fLandmarksPrev[i] = fLandmarks[i];
}
faceStatusPrev = fp.GetFaceStatus();
}
else
{
grayFramePrev = cv::Mat();
fLandmarksPrev.clear();
faceStatusPrev.clear();
}
// show processing time
eTime = clock();
char deltaTimeStr[256] = { 0 };
sprintf_s(deltaTimeStr, "%d ms", (eTime - sTime));
cv::putText(img, deltaTimeStr, cv::Point(30, 30), cv::FONT_HERSHEY_COMPLEX, 1, CV_RGB(255, 255, 255));
cv::imshow("Result", img);
int key = 0;
//if (faceNum > 0) key = cv::waitKey();
//else key = cv::waitKey(1);
key = cv::waitKey(1);
if (key == 27) break;
else if (key == 83 || key == 115)
{
std::time_t time = std::time(NULL);
char timeStr[128] = { 0 };
std::strftime(timeStr, sizeof(timeStr), "./Offline/%Y-%m-%d-%H-%M-%S.bmp", std::localtime(&time));
cv::imwrite(timeStr, originImg);
}
else if (key == 76 || key == 108) // 'l' or 'L'
{
showLandmark = !showLandmark;
}
else if (key == 70 || key == 102) // 'f' or 'F'
{
showCroppedFaceImg = !showCroppedFaceImg;
}
}
std::cout << "False Rate :"<<falseCount <<"/"<< totalCount << std::endl;
}
//
system("pause");
return 0;
}