forked from soiaf/C-Sharp-WavPack-Decoder
-
Notifications
You must be signed in to change notification settings - Fork 0
/
WordsUtils.cs
663 lines (540 loc) · 20.5 KB
/
WordsUtils.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
/*
** WordsUtils.cs
**
** Copyright (c) 2010-2016 Peter McQuillan
**
** All Rights Reserved.
**
** Distributed under the BSD Software License (see license.txt)
***/
namespace WavPack
{
class WordsUtils
{
//////////////////////////////// local macros /////////////////////////////////
internal static int LIMIT_ONES = 16; // maximum consecutive 1s sent for "div" data
// these control the time constant "slow_level" which is used for hybrid mode
// that controls bitrate as a function of residual level (HYBRID_BITRATE).
internal static int SLS = 8;
internal static int SLO = ((1 << (SLS - 1)));
// these control the time constant of the 3 median level breakpoints
internal static int DIV0 = 128; // 5/7 of samples
internal static int DIV1 = 64; // 10/49 of samples
internal static int DIV2 = 32; // 20/343 of samples
///////////////////////////// local table storage ////////////////////////////
internal static int[] nbits_table =
new int[]{
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, // 0 - 15
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, // 16 - 31
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, // 32 - 47
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, // 48 - 63
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, // 64 - 79
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, // 80 - 95
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, // 96 - 111
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, // 112 - 127
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, // 128 - 143
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, // 144 - 159
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, // 160 - 175
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, // 176 - 191
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, // 192 - 207
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, // 208 - 223
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, // 224 - 239
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 // 240 - 255
};
internal static int[] log2_table = new int[] { 0x00, 0x01, 0x03, 0x04, 0x06, 0x07, 0x09, 0x0a, 0x0b, 0x0d, 0x0e, 0x10, 0x11, 0x12, 0x14, 0x15, 0x16, 0x18, 0x19, 0x1a, 0x1c, 0x1d, 0x1e, 0x20, 0x21, 0x22, 0x24, 0x25, 0x26, 0x28, 0x29, 0x2a, 0x2c, 0x2d, 0x2e, 0x2f, 0x31, 0x32, 0x33, 0x34, 0x36, 0x37, 0x38, 0x39, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x41, 0x42, 0x43, 0x44, 0x45, 0x47, 0x48, 0x49, 0x4a, 0x4b, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x52, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5c, 0x5d, 0x5e, 0x5f, 0x60, 0x61, 0x62, 0x63, 0x64, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, 0xb0, 0xb1, 0xb2, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf, 0xc0, 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, 0xd0, 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdc, 0xdd, 0xde, 0xdf, 0xe0, 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe4, 0xe5, 0xe6, 0xe7, 0xe7, 0xe8, 0xe9, 0xea, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xee, 0xef, 0xf0, 0xf1, 0xf1, 0xf2, 0xf3, 0xf4, 0xf4, 0xf5, 0xf6, 0xf7, 0xf7, 0xf8, 0xf9, 0xf9, 0xfa, 0xfb, 0xfc, 0xfc, 0xfd, 0xfe, 0xff, 0xff };
internal static int[] exp2_table = new int[] { 0x00, 0x01, 0x01, 0x02, 0x03, 0x03, 0x04, 0x05, 0x06, 0x06, 0x07, 0x08, 0x08, 0x09, 0x0a, 0x0b, 0x0b, 0x0c, 0x0d, 0x0e, 0x0e, 0x0f, 0x10, 0x10, 0x11, 0x12, 0x13, 0x13, 0x14, 0x15, 0x16, 0x16, 0x17, 0x18, 0x19, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1d, 0x1e, 0x1f, 0x20, 0x20, 0x21, 0x22, 0x23, 0x24, 0x24, 0x25, 0x26, 0x27, 0x28, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40, 0x41, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5e, 0x5f, 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xaf, 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xbc, 0xbd, 0xbe, 0xbf, 0xc0, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc8, 0xc9, 0xca, 0xcb, 0xcd, 0xce, 0xcf, 0xd0, 0xd2, 0xd3, 0xd4, 0xd6, 0xd7, 0xd8, 0xd9, 0xdb, 0xdc, 0xdd, 0xde, 0xe0, 0xe1, 0xe2, 0xe4, 0xe5, 0xe6, 0xe8, 0xe9, 0xea, 0xec, 0xed, 0xee, 0xf0, 0xf1, 0xf2, 0xf4, 0xf5, 0xf6, 0xf8, 0xf9, 0xfa, 0xfc, 0xfd, 0xff };
internal static int[] ones_count_table = new int[] {
0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,
0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,6,
0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,
0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,7,
0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,
0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,6,
0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,
0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,8
};
///////////////////////////// executable code ////////////////////////////////
// Read the median log2 values from the specifed metadata structure, convert
// them back to 32-bit unsigned values and store them. If length is not
// exactly correct then we flag and return an error.
internal static int read_entropy_vars(WavpackStream wps, WavpackMetadata wpmd)
{
byte[] byteptr = wpmd.data;
int[] b_array = new int[12];
int i = 0;
words_data w = new words_data();
for (i = 0; i < 6; i++)
{
b_array[i] = byteptr[i];
}
w.holding_one = false;
w.holding_zero = false;
if (wpmd.byte_length != 12)
{
if ((wps.wphdr.flags & (Defines.MONO_FLAG | Defines.FALSE_STEREO)) == 0)
{
return Defines.FALSE;
}
}
w.c[0].median[0] = exp2s(b_array[0] + (b_array[1] << 8));
w.c[0].median[1] = exp2s(b_array[2] + (b_array[3] << 8));
w.c[0].median[2] = exp2s(b_array[4] + (b_array[5] << 8));
if ((wps.wphdr.flags & (Defines.MONO_FLAG | Defines.FALSE_STEREO)) == 0)
{
for (i = 6; i < 12; i++)
{
b_array[i] = byteptr[i];
}
w.c[1].median[0] = exp2s(b_array[6] + (b_array[7] << 8));
w.c[1].median[1] = exp2s(b_array[8] + (b_array[9] << 8));
w.c[1].median[2] = exp2s(b_array[10] + (b_array[11] << 8));
}
wps.w = w;
return Defines.TRUE;
}
// Read the hybrid related values from the specifed metadata structure, convert
// them back to their internal formats and store them. The extended profile
// stuff is not implemented yet, so return an error if we get more data than
// we know what to do with.
internal static int read_hybrid_profile(WavpackStream wps, WavpackMetadata wpmd)
{
byte[] byteptr = wpmd.data;
int bytecnt = wpmd.byte_length;
int buffer_counter = 0;
int uns_buf = 0;
int uns_buf_plusone = 0;
if ((wps.wphdr.flags & Defines.HYBRID_BITRATE) != 0)
{
uns_buf = byteptr[buffer_counter];
uns_buf_plusone = byteptr[buffer_counter + 1];
wps.w.c[0].slow_level = exp2s(uns_buf + (uns_buf_plusone << 8));
buffer_counter = buffer_counter + 2;
if ((wps.wphdr.flags & (Defines.MONO_FLAG | Defines.FALSE_STEREO)) == 0)
{
uns_buf = byteptr[buffer_counter];
uns_buf_plusone = byteptr[buffer_counter + 1];
wps.w.c[1].slow_level = exp2s(uns_buf + (uns_buf_plusone << 8));
buffer_counter = buffer_counter + 2;
}
}
uns_buf = byteptr[buffer_counter];
uns_buf_plusone = byteptr[buffer_counter + 1];
wps.w.bitrate_acc[0] = (uns_buf + (uns_buf_plusone << 8)) << 16;
buffer_counter = buffer_counter + 2;
if ((wps.wphdr.flags & (Defines.MONO_FLAG | Defines.FALSE_STEREO)) == 0)
{
uns_buf = byteptr[buffer_counter];
uns_buf_plusone = byteptr[buffer_counter + 1];
wps.w.bitrate_acc[1] = (uns_buf + (uns_buf_plusone << 8)) << 16;
buffer_counter = buffer_counter + 2;
}
if (buffer_counter < bytecnt)
{
uns_buf = byteptr[buffer_counter];
uns_buf_plusone = byteptr[buffer_counter + 1];
wps.w.bitrate_delta[0] = exp2s((short)(uns_buf + (uns_buf_plusone << 8)));
buffer_counter = buffer_counter + 2;
if ((wps.wphdr.flags & (Defines.MONO_FLAG | Defines.FALSE_STEREO)) == 0)
{
uns_buf = byteptr[buffer_counter];
uns_buf_plusone = byteptr[buffer_counter + 1];
wps.w.bitrate_delta[1] = exp2s((short)(uns_buf + (uns_buf_plusone << 8)));
buffer_counter = buffer_counter + 2;
}
if (buffer_counter < bytecnt)
return Defines.FALSE;
}
else
wps.w.bitrate_delta[0] = wps.w.bitrate_delta[1] = 0;
return Defines.TRUE;
}
// This function is called during both encoding and decoding of hybrid data to
// update the "error_limit" variable which determines the maximum sample error
// allowed in the main bitstream. In the HYBRID_BITRATE mode (which is the only
// currently implemented) this is calculated from the slow_level values and the
// bitrate accumulators. Note that the bitrate accumulators can be changing.
internal static words_data update_error_limit(words_data w, long flags)
{
int bitrate_0 = (int)((w.bitrate_acc[0] += w.bitrate_delta[0]) >> 16);
if ((flags & (Defines.MONO_FLAG | Defines.FALSE_STEREO)) != 0)
{
if ((flags & Defines.HYBRID_BITRATE) != 0)
{
int slow_log_0 = (int)((w.c[0].slow_level + SLO) >> SLS);
if (slow_log_0 - bitrate_0 > -0x100)
w.c[0].error_limit = exp2s(slow_log_0 - bitrate_0 + 0x100);
else
w.c[0].error_limit = 0;
}
else
w.c[0].error_limit = exp2s(bitrate_0);
}
else
{
int bitrate_1 = (int)((w.bitrate_acc[1] += w.bitrate_delta[1]) >> 16);
if ((flags & Defines.HYBRID_BITRATE) != 0)
{
int slow_log_0 = (int)((w.c[0].slow_level + SLO) >> SLS);
int slow_log_1 = (int)((w.c[1].slow_level + SLO) >> SLS);
if ((flags & Defines.HYBRID_BALANCE) != 0)
{
int balance = (slow_log_1 - slow_log_0 + bitrate_1 + 1) >> 1;
if (balance > bitrate_0)
{
bitrate_1 = bitrate_0 * 2;
bitrate_0 = 0;
}
else if (-balance > bitrate_0)
{
bitrate_0 = bitrate_0 * 2;
bitrate_1 = 0;
}
else
{
bitrate_1 = bitrate_0 + balance;
bitrate_0 = bitrate_0 - balance;
}
}
if (slow_log_0 - bitrate_0 > -0x100)
w.c[0].error_limit = exp2s(slow_log_0 - bitrate_0 + 0x100);
else
w.c[0].error_limit = 0;
if (slow_log_1 - bitrate_1 > -0x100)
w.c[1].error_limit = exp2s(slow_log_1 - bitrate_1 + 0x100);
else
w.c[1].error_limit = 0;
}
else
{
w.c[0].error_limit = exp2s(bitrate_0);
w.c[1].error_limit = exp2s(bitrate_1);
}
}
return w;
}
// Read the next word from the bitstream "wvbits" and return the value. This
// function can be used for hybrid or lossless streams, but since an
// optimized version is available for lossless this function would normally
// be used for hybrid only. If a hybrid lossless stream is being read then
// the "correction" offset is written at the specified pointer. A return value
// of WORD_EOF indicates that the end of the bitstream was reached (all 1s) or
// some other error occurred.
internal static int get_words(long nsamples, long flags, words_data w, Bitstream bs, int[] buffer, int bufferStartPos)
{
entropy_data[] c = w.c;
int csamples;
int buffer_counter = bufferStartPos;
int entidx = 1;
if ((flags & (Defines.MONO_FLAG | Defines.FALSE_STEREO)) == 0)
// if not mono
{
nsamples *= 2;
}
else
{
// it is mono
entidx = 0;
}
for (csamples = 0; csamples < nsamples; ++csamples)
{
int ones_count;
long low, high, mid;
if ((flags & (Defines.MONO_FLAG | Defines.FALSE_STEREO)) == 0)
// if not mono
{
if (entidx == 1)
entidx = 0;
else
entidx = 1;
}
if ((w.c[0].median[0] & ~1) == 0 && !w.holding_zero && !w.holding_one && (w.c[1].median[0] & ~1) == 0)
{
long mask;
int cbits;
if (w.zeros_acc > 0)
{
if (--w.zeros_acc > 0)
{
c[entidx].slow_level -= (c[entidx].slow_level + SLO) >> SLS;
buffer[buffer_counter] = 0;
buffer_counter++;
continue;
}
}
else
{
for (cbits = 0; cbits < 33 && BitsUtils.getbit(bs); ++cbits) ;
if (cbits == 33)
break;
if (cbits < 2)
w.zeros_acc = cbits;
else
{
for (mask = 1, w.zeros_acc = 0; --cbits > 0; mask <<= 1)
if (BitsUtils.getbit(bs))
w.zeros_acc |= mask;
w.zeros_acc |= mask;
}
if (w.zeros_acc > 0)
{
c[entidx].slow_level -= ((c[entidx].slow_level + SLO) >> SLS);
w.c[0].median[0] = 0;
w.c[0].median[1] = 0;
w.c[0].median[2] = 0;
w.c[1].median[0] = 0;
w.c[1].median[1] = 0;
w.c[1].median[2] = 0;
buffer[buffer_counter] = 0;
buffer_counter++;
continue;
}
}
}
if (w.holding_zero)
{
w.holding_zero = false;
ones_count = 0;
}
else
{
if (bs.bc < 8)
{
bs.ptr++;
bs.buf_index++;
if (bs.ptr == bs.end)
bs = BitsUtils.bs_read(bs);
bs.sr |= (uint)(bs.buf[bs.buf_index] << bs.bc);
bs.bc += 8;
}
byte next8 = (byte)bs.sr;
if (next8 == 0xff)
{
bs.bc -= 8;
bs.sr >>= 8;
for (ones_count = 8; ones_count < (LIMIT_ONES + 1) && BitsUtils.getbit(bs); ++ones_count) ;
if (ones_count == (LIMIT_ONES + 1))
break;
if (ones_count == LIMIT_ONES)
{
int mask;
int cbits;
for (cbits = 0; cbits < 33 && BitsUtils.getbit(bs); ++cbits) ;
if (cbits == 33)
break;
if (cbits < 2)
ones_count = cbits;
else
{
for (mask = 1, ones_count = 0; --cbits > 0; mask <<= 1)
if (BitsUtils.getbit(bs))
ones_count |= mask;
ones_count |= mask;
}
ones_count += LIMIT_ONES;
}
}
else
{
bs.bc -= (ones_count = ones_count_table[next8]) + 1;
bs.sr >>= ones_count + 1; // needs to be unsigned
}
if (w.holding_one)
{
w.holding_one = (ones_count & 1) > 0;
ones_count = (ones_count >> 1) + 1;
}
else
{
w.holding_one = (ones_count & 1) > 0;
ones_count >>= 1;
}
w.holding_zero = !w.holding_one;
}
if ((flags & Defines.HYBRID_FLAG) > 0 && ((flags & (Defines.MONO_FLAG | Defines.FALSE_STEREO)) > 0 || (csamples & 1) == 0))
w = update_error_limit(w, flags);
if (ones_count == 0)
{
low = 0;
high = (((c[entidx].median[0]) >> 4) + 1) - 1;
// for c# I replace the division by DIV0 with >> 7
c[entidx].median[0] -= (((c[entidx].median[0] + (DIV0 - 2)) >> 7) * 2);
}
else
{
low = (((c[entidx].median[0]) >> 4) + 1);
// for c# I replace the division by DIV0 with >> 7
c[entidx].median[0] += ((c[entidx].median[0] + DIV0) >> 7) * 5;
if (ones_count == 1)
{
high = low + (((c[entidx].median[1]) >> 4) + 1) - 1;
// for c# I replace the division by DIV1 with >> 6
c[entidx].median[1] -= ((c[entidx].median[1] + (DIV1 - 2)) >> 6) * 2;
}
else
{
low += (((c[entidx].median[1]) >> 4) + 1);
// for c# I replace the division by DIV1 with >> 6
c[entidx].median[1] += ((c[entidx].median[1] + DIV1) >> 6) * 5;
if (ones_count == 2)
{
high = low + (((c[entidx].median[2]) >> 4) + 1) - 1;
// for c# I replace the division by DIV2 with >> 5
c[entidx].median[2] -= ((c[entidx].median[2] + (DIV2 - 2)) >> 5) * 2;
}
else
{
low += (ones_count - 2) * (((c[entidx].median[2]) >> 4) + 1);
high = low + (((c[entidx].median[2]) >> 4) + 1) - 1;
// for c# I replace the division by DIV2 with >> 5
c[entidx].median[2] += ((c[entidx].median[2] + DIV2) >> 5) * 5;
}
}
}
mid = (high + low + 1) >> 1;
if (c[entidx].error_limit == 0)
{
mid = read_code(bs, high - low);
mid = mid + low;
}
else
while (high - low > c[entidx].error_limit)
{
if (BitsUtils.getbit(bs))
mid = (high + (low = mid) + 1) >> 1;
else
mid = ((high = mid - 1) + low + 1) >> 1;
}
if (BitsUtils.getbit(bs))
buffer[buffer_counter] = (int)~mid;
else
buffer[buffer_counter] = (int)mid;
buffer_counter++;
if ((flags & Defines.HYBRID_BITRATE) > 0)
c[entidx].slow_level = c[entidx].slow_level - ((c[entidx].slow_level + SLO) >> SLS) + mylog2(mid);
}
w.c = c;
if ((flags & (Defines.MONO_FLAG | Defines.FALSE_STEREO)) != 0)
return csamples;
else
return (csamples / 2);
}
internal static int count_bits(long av)
{
if (av < 256) // 1 << 8
{
return nbits_table[av];
}
else
{
if (av < 65536) // 1 << 16
{
return nbits_table[(av >> 8)] + 8;
}
else
{
if (av < 16777216) // 1 << 24
{
return nbits_table[(av >> 16)] + 16;
}
else
{
return nbits_table[(av >> 24)] + 24;
}
}
}
}
// Read a single unsigned value from the specified bitstream with a value
// from 0 to maxcode. If there are exactly a power of two number of possible
// codes then this will read a fixed number of bits; otherwise it reads the
// minimum number of bits and then determines whether another bit is needed
// to define the code.
internal static long read_code(Bitstream bs, long maxcode)
{
int bitcount = count_bits(maxcode);
long extras = (1 << bitcount) - maxcode - 1;
long code;
if (bitcount == 0)
{
return (0);
}
code = BitsUtils.getbits(bitcount - 1, bs);
code &= (1 << (bitcount - 1)) - 1;
if (code >= extras)
{
code = (code << 1) - extras;
if (BitsUtils.getbit(bs))
++code;
}
return (code);
}
// The concept of a base 2 logarithm is used in many parts of WavPack. It is
// a way of sufficiently accurately representing 32-bit signed and unsigned
// values storing only 16 bits (actually fewer). It is also used in the hybrid
// mode for quickly comparing the relative magnitude of large values (i.e.
// division) and providing smooth exponentials using only addition.
// These are not strict logarithms in that they become linear around zero and
// can therefore represent both zero and negative values. They have 8 bits
// of precision and in "roundtrip" conversions the total error never exceeds 1
// part in 225 except for the cases of +/-115 and +/-195 (which error by 1).
// This function returns the log2 for the specified 32-bit unsigned value.
// The maximum value allowed is about 0xff800000 and returns 8447.
internal static int mylog2(long avalue)
{
int dbits;
if ((avalue += (avalue >> 9)) < (1 << 8))
{
dbits = nbits_table[(int)avalue];
return (dbits << 8) + log2_table[(int)(avalue << (9 - dbits)) & 0xff];
}
else
{
if (avalue < (1L << 16))
dbits = nbits_table[(int)(avalue >> 8)] + 8;
else if (avalue < (1L << 24))
dbits = nbits_table[(int)(avalue >> 16)] + 16;
else
dbits = nbits_table[(int)(avalue >> 24)] + 24;
return (dbits << 8) + log2_table[(int)(avalue >> (dbits - 9)) & 0xff];
}
}
// This function returns the log2 for the specified 32-bit signed value.
// All input values are valid and the return values are in the range of
// +/- 8192.
internal virtual int log2s(int value_Renamed)
{
if (value_Renamed < 0)
{
return -mylog2(-value_Renamed);
}
else
{
return mylog2(value_Renamed);
}
}
// This function returns the original integer represented by the supplied
// logarithm (at least within the provided accuracy). The log is signed,
// but since a full 32-bit value is returned this can be used for unsigned
// conversions as well (i.e. the input range is -8192 to +8447).
internal static int exp2s(int log)
{
long value_Renamed;
if (log < 0)
return -exp2s(-log);
value_Renamed = exp2_table[log & 0xff] | 0x100;
if ((log >>= 8) <= 9)
return ((int)(value_Renamed >> (9 - log)));
else
return ((int)(value_Renamed << (log - 9)));
}
// These two functions convert internal weights (which are normally +/-1024)
// to and from an 8-bit signed character version for storage in metadata. The
// weights are clipped here in the case that they are outside that range.
internal static int restore_weight(sbyte weight)
{
int result;
if ((result = weight << 3) > 0)
result += (result + 64) >> 7;
return result;
}
}
}