Skip to content

Commit f110f6d

Browse files
committed
FIX: figure -> image directive in excercises
1 parent 4dfd5fa commit f110f6d

File tree

9 files changed

+22
-13
lines changed

9 files changed

+22
-13
lines changed

lectures/career.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -370,7 +370,8 @@ when the worker follows the optimal policy.
370370

371371
In particular, modulo randomness, reproduce the following figure (where the horizontal axis represents time)
372372

373-
```{figure} /_static/lecture_specific/career/career_solutions_ex1_py.png
373+
```{image} /_static/lecture_specific/career/career_solutions_ex1_py.png
374+
:align: center
374375
```
375376

376377
```{hint}

lectures/finite_markov.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1113,7 +1113,8 @@ is known as [PageRank](https://en.wikipedia.org/wiki/PageRank).
11131113
11141114
To illustrate the idea, consider the following diagram
11151115
1116-
```{figure} /_static/lecture_specific/finite_markov/web_graph.png
1116+
```{image} /_static/lecture_specific/finite_markov/web_graph.png
1117+
:align: center
11171118
```
11181119
11191120
Imagine that this is a miniature version of the WWW, with

lectures/ifp.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -548,7 +548,8 @@ Let's consider how the interest rate affects consumption.
548548

549549
Reproduce the following figure, which shows (approximately) optimal consumption policies for different interest rates
550550

551-
```{figure} /_static/lecture_specific/ifp/ifp_policies.png
551+
```{image} /_static/lecture_specific/ifp/ifp_policies.png
552+
:align: center
552553
```
553554

554555
* Other than `r`, all parameters are at their default values.

lectures/kalman.md

Lines changed: 6 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -565,7 +565,8 @@ In the simulation, take $\theta = 10$, $\hat x_0 = 8$ and $\Sigma_0 = 1$.
565565

566566
Your figure should -- modulo randomness -- look something like this
567567

568-
```{figure} /_static/lecture_specific/kalman/kl_ex1_fig.png
568+
```{image} /_static/lecture_specific/kalman/kl_ex1_fig.png
569+
:align: center
569570
```
570571

571572
```{exercise-end}
@@ -629,7 +630,8 @@ Plot $z_t$ against $T$, setting $\epsilon = 0.1$ and $T = 600$.
629630

630631
Your figure should show error erratically declining something like this
631632

632-
```{figure} /_static/lecture_specific/kalman/kl_ex2_fig.png
633+
```{image} /_static/lecture_specific/kalman/kl_ex2_fig.png
634+
:align: center
633635
```
634636

635637
```{exercise-end}
@@ -732,7 +734,8 @@ Finally, set $x_0 = (0, 0)$.
732734

733735
You should end up with a figure similar to the following (modulo randomness)
734736

735-
```{figure} /_static/lecture_specific/kalman/kalman_ex3.png
737+
```{image} /_static/lecture_specific/kalman/kalman_ex3.png
738+
:align: center
736739
```
737740

738741
Observe how, after an initial learning period, the Kalman filter performs quite well, even relative to the competitor who predicts optimally with knowledge of the latent state.

lectures/likelihood_bayes.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -606,7 +606,7 @@ A correct Bayesian approach should directly model the uncertainty about $x$ and
606606
607607
Here is the algorithm:
608608
609-
First we specify a prior distribution for $x$ given by $x \sim \text{Beta}(\alpha_0, \beta_0)$ with sexpectation $\mathbb{E}[x] = \frac{\alpha_0}{\alpha_0 + \beta_0}$.
609+
First we specify a prior distribution for $x$ given by $x \sim \text{Beta}(\alpha_0, \beta_0)$ with expectation $\mathbb{E}[x] = \frac{\alpha_0}{\alpha_0 + \beta_0}$.
610610
611611
The likelihood for a single observation $w_t$ is $p(w_t|x) = x f(w_t) + (1-x) g(w_t)$.
612612

lectures/markov_perf.md

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -722,7 +722,8 @@ c1 = c2 = np.array([1, -2, 1])
722722
e1 = e2 = np.array([10, 10, 3])
723723
```
724724

725-
```{figure} /_static/lecture_specific/markov_perf/judd_fig2.png
725+
```{image} /_static/lecture_specific/markov_perf/judd_fig2.png
726+
:align: center
726727
```
727728

728729
Inventories trend to a common steady state.
@@ -731,7 +732,8 @@ If we increase the depreciation rate to $\delta = 0.05$, then we expect steady s
731732

732733
This is indeed the case, as the next figure shows
733734

734-
```{figure} /_static/lecture_specific/markov_perf/judd_fig1.png
735+
```{image} /_static/lecture_specific/markov_perf/judd_fig1.png
736+
:align: center
735737
```
736738

737739
In this exercise, reproduce the figure when $\delta = 0.02$.

lectures/ols.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -604,7 +604,7 @@ results.
604604

605605
```{code-cell} python3
606606
# Load in data
607-
df4 = pd.read_stata('https://github.com/QuantEcon/lecture-python/blob/master/source/_static/lecture_specific/ols/maketable4.dta?raw=true')
607+
df4 = pd.read_stata('https://github.com/QuantEcon/lecture-python.myst/raw/refs/heads/main/lectures/_static/lecture_specific/ols/maketable4.dta')
608608
609609
# Add a constant term
610610
df4['const'] = 1
@@ -677,7 +677,7 @@ using `numpy` - your results should be the same as those in the
677677

678678
```{code-cell} python3
679679
# Load in data
680-
df1 = pd.read_stata('https://github.com/QuantEcon/lecture-python/blob/master/source/_static/lecture_specific/ols/maketable1.dta?raw=true')
680+
df1 = pd.read_stata('https://github.com/QuantEcon/lecture-python.myst/raw/refs/heads/main/lectures/_static/lecture_specific/ols/maketable1.dta')
681681
df1 = df1.dropna(subset=['logpgp95', 'avexpr'])
682682
683683
# Add a constant term

lectures/optgrowth_fast.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -344,7 +344,8 @@ $$
344344
The next figure shows a simulation of 100 elements of this sequence for three
345345
different discount factors (and hence three different policies).
346346

347-
```{figure} /_static/lecture_specific/optgrowth/solution_og_ex2.png
347+
```{image} /_static/lecture_specific/optgrowth/solution_og_ex2.png
348+
:align: center
348349
```
349350

350351
In each sequence, the initial condition is $y_0 = 0.1$.

lectures/pandas_panel.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -502,7 +502,7 @@ in Europe by age and sex from [Eurostat](https://ec.europa.eu/eurostat/data/data
502502
The dataset can be accessed with the following link:
503503

504504
```{code-cell} ipython3
505-
url3 = 'https://raw.githubusercontent.com/QuantEcon/lecture-python/master/source/_static/lecture_specific/pandas_panel/employ.csv'
505+
url3 = 'https://github.com/QuantEcon/lecture-python.myst/raw/refs/heads/main/lectures/_static/lecture_specific/pandas_panel/employ.csv'
506506
```
507507

508508
Reading in the CSV file returns a panel dataset in long format. Use `.pivot_table()` to construct

0 commit comments

Comments
 (0)