-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTest_Track_3_SRMD_non_blind.m
53 lines (39 loc) · 1.64 KB
/
Test_Track_3_SRMD_non_blind.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
% http://www.vision.ee.ethz.ch/en/ntire18/
% paper: http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w13/Timofte_NTIRE_2018_Challenge_CVPR_2018_paper.pdf
% 1) non-blind SRMD can handle Track 2, 3 and 4 in a single model.
% 2) non-blind SRMD can produce good results with accurate blur kernel of LR images.
% Since non-blind SRMD also takes the blur kernel (degradation maps) as input, we use the information of LR image in Track 1 to facilitate the blur kernel estimation.
% In this code, the dimention-reduced blur kernels are precalculated and
% are stored in `kernel_reduced_3`of the `SRMD_non_blind.mat`.
% Note: we use a single `SRMD_non_blind.mat` model in `Test_Track_3_SRMD_non_blind.m` and `Test_Track_4_SRMD_non_blind.m`.
gpu = 1;
%% load model
load(fullfile('model','SRMD_non_blind.mat'));
if gpu
net = vl_simplenn_move(net, 'gpu') ;
end
%% LR images
folderLR = 'H:\matlabH\DIV2K_test_LR_difficult';
folderResultCur= 'Results_Track_3_non_blind';
if ~isdir(folderResultCur)
mkdir(folderResultCur)
end
global kncf;
for i = 1:100
Iname = num2str(i+900,'%04d');
LR = im2single(imread(fullfile(folderLR,[Iname,'x4d.png'])));
kncf = kernel_reduced_3(:,i); % reduced blur kernel after PCA projection
tic;
if gpu
input = gpuArray(single(LR));
end
res = vl_simplenn(net, input,[],[],'conserveMemory',true,'mode','test');
im = res(end).x;
if gpu
im = gather(im);
end
toc;
imshow(cat(2,imresize(LR,4),im));
imwrite(im, fullfile(folderResultCur,[Iname,'x4d.png']));
pause(0.001)
end