-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patharguments.py
76 lines (66 loc) · 2.36 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from typing import Optional
from dataclasses import dataclass, field
from transformers import TrainingArguments
@dataclass
class ModelArguments:
PLM: str = field(
default="klue/roberta-large",
metadata={
"help": "Path to pretrained model or model identifier from huggingface.co/models"
},
)
save_path: str = field(
default="checkpoints", metadata={"help": "Path to save checkpoint from fine tune model"},
)
model_category: str = field(default="base", metadata={"help": "Model category(base, retro)"})
@dataclass
class DataTrainingArguments:
max_length: int = field(
default=512, metadata={"help": "Max length of input sequence"},
)
stride: int = field(
default=128, metadata={"help": "stride width for overflow token mappings"},
)
data_path: str = field(
default="QuoQA-NLP/train-only", metadata={"help": "Huggingface dataset name"}
)
@dataclass
class MyTrainingArguments(TrainingArguments):
report_to: Optional[str] = field(default="wandb",)
model_name: Optional[str] = field(
default="base",
metadata={
"help": "model class if class is base, it returns AutoModelForQuestionAnswering class"
},
)
max_answer_length: Optional[int] = field(
default=30, metadata={"help": "Maximum length of answer after post processing"}
)
use_validation: bool = field(
default=False, metadata={"help": "Use validation dataset"},
)
@dataclass
class LoggingArguments:
dotenv_path: Optional[str] = field(
default="wandb.env", metadata={"help": "input your dotenv path"},
)
project_name: Optional[str] = field(
default="AiChallenge - MRC", metadata={"help": "project name"},
)
group_name: Optional[str] = field(
default="reproduction", metadata={"help": "group name"},
)
@dataclass
class InferenceArguments:
file_name: Optional[str] = field(
default="base.csv", metadata={"help": "The csv file for test dataset"}
)
dotenv_path: Optional[str] = field(
default="wandb.env", metadata={"help": "input your dotenv path"},
)
use_ensemable: Optional[bool] = field(
default=False, metadata={"help": "flag wheter to use ensemable"}
)
best_exact_threshold: Optional[float] = field(
default=0.0, metadata={"help": "exact threshold"}
)