-
Notifications
You must be signed in to change notification settings - Fork 2
/
args.py
274 lines (252 loc) · 7.8 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import argparse
import sys
import yaml
from configs import parser as _parser
args = None
def parse_arguments():
parser = argparse.ArgumentParser(description="PyTorch ImageNet Training for STR, DNW and GMP")
# General Config
parser.add_argument(
"--data", help="path to dataset base directory", default="/mnt/disk1/datasets"
)
parser.add_argument("--optimizer", help="Which optimizer to use", default="sgd")
parser.add_argument("--set", help="name of dataset", type=str, default="ImageNet")
parser.add_argument(
"-a", "--arch", metavar="ARCH", default="ResNet18", help="model architecture"
)
parser.add_argument(
"--config", help="Config file to use (see configs dir)", default=None
)
parser.add_argument(
"--log-dir", help="Where to save the runs. If None use ./runs", default=None
)
parser.add_argument(
"-j",
"--workers",
default=20,
type=int,
metavar="N",
help="number of data loading workers (default: 20)",
)
parser.add_argument(
"--epochs",
default=90,
type=int,
metavar="N",
help="number of total epochs to run",
)
parser.add_argument(
"--start-epoch",
default=None,
type=int,
metavar="N",
help="manual epoch number (useful on restarts)",
)
parser.add_argument(
"-b",
"--batch-size",
default=256,
type=int,
metavar="N",
help="mini-batch size (default: 256), this is the total "
"batch size of all GPUs on the current node when "
"using Data Parallel or Distributed Data Parallel",
)
parser.add_argument(
"--lr",
"--learning-rate",
default=0.1,
type=float,
metavar="LR",
help="initial learning rate",
dest="lr",
)
parser.add_argument(
"--warmup_length", default=0, type=int, help="Number of warmup iterations"
)
parser.add_argument(
"--init_prune_epoch", default=0, type=int, help="Init epoch for pruning in GMP"
)
parser.add_argument(
"--final_prune_epoch", default=-100, type=int, help="Final epoch for pruning in GMP"
)
parser.add_argument(
"--momentum", default=0.9, type=float, metavar="M", help="momentum"
)
parser.add_argument(
"--wd",
"--weight-decay",
default=1e-4,
type=float,
metavar="W",
help="weight decay (default: 1e-4)",
dest="weight_decay",
)
parser.add_argument(
"-p",
"--print-freq",
default=10,
type=int,
metavar="N",
help="print frequency (default: 10)",
)
parser.add_argument(
"--num-classes",
default=10,
type=int,
)
parser.add_argument(
"--resume",
default="",
type=str,
metavar="PATH",
help="path to latest checkpoint (default: none)",
)
parser.add_argument(
"-e",
"--evaluate",
dest="evaluate",
action="store_true",
help="evaluate model on validation set",
)
parser.add_argument(
"--pretrained",
type=str,
default=None,
)
parser.add_argument(
"--seed", default=None, type=int, help="seed for initializing training. "
)
parser.add_argument(
"--multigpu",
default=None,
type=lambda x: [int(a) for a in x.split(",")],
help="Which GPUs to use for multigpu training",
)
# Learning Rate Policy Specific
parser.add_argument(
"--lr-policy", default="constant_lr", help="Policy for the learning rate."
)
parser.add_argument(
"--multistep-lr-adjust", default=30, type=int, help="Interval to drop lr"
)
parser.add_argument(
"--multistep-lr-gamma", default=0.1, type=int, help="Multistep multiplier"
)
parser.add_argument(
"--name", default=None, type=str, help="Experiment name to append to filepath"
)
parser.add_argument(
"--save_every", default=-1, type=int, help="Save every ___ epochs"
)
parser.add_argument(
"--prune-rate",
default=0.0,
help="Amount of pruning to do during sparse training",
type=float,
)
parser.add_argument(
"--width-mult",
default=1.0,
help="How much to vary the width of the network.",
type=float,
)
parser.add_argument(
"--nesterov",
default=False,
action="store_true",
help="Whether or not to use nesterov for SGD",
)
parser.add_argument(
"--random-mask",
action="store_true",
help="Whether or not to use a random mask when fine tuning for lottery experiments",
)
parser.add_argument(
"--one-batch",
action="store_true",
help="One batch train set for debugging purposes (test overfitting)",
)
parser.add_argument(
"--conv-type", type=str, default=None, help="What kind of sparsity to use"
)
parser.add_argument(
"--freeze-weights",
action="store_true",
help="Whether or not to train only mask (this freezes weights)",
)
parser.add_argument("--mode", default="fan_in", help="Weight initialization mode")
parser.add_argument(
"--nonlinearity", default="relu", help="Nonlinearity used by initialization"
)
parser.add_argument("--bn-type", default=None, help="BatchNorm type")
parser.add_argument(
"--init", default="kaiming_normal", help="Weight initialization modifications"
)
parser.add_argument(
"--no-bn-decay", action="store_true", default=False, help="No batchnorm decay"
)
parser.add_argument(
"--dense-conv-model", action="store_true", default=False, help="Store a model variant of the given pretrained model that is compatible to CNNs with DenseConv (nn.Conv2d)"
)
parser.add_argument(
"--st-decay", type=float, default=None, help="decay for sparse thresh. If none then use normal weight decay."
)
parser.add_argument(
"--scale-fan", action="store_true", default=False, help="scale fan"
)
parser.add_argument(
"--first-layer-dense", action="store_true", help="First layer dense or sparse"
)
parser.add_argument(
"--last-layer-dense", action="store_true", help="Last layer dense or sparse"
)
parser.add_argument(
"--label-smoothing",
type=float,
help="Label smoothing to use, default 0.0",
default=None,
)
parser.add_argument(
"--first-layer-type", type=str, default=None, help="Conv type of first layer"
)
parser.add_argument(
"--sInit-type",
type=str,
help="type of sInit",
default="constant",
)
parser.add_argument(
"--sInit-value",
type=float,
help="initial value for sInit",
default=100,
)
parser.add_argument(
"--sparse-function", type=str, default='sigmoid', help="choice of g(s)"
)
parser.add_argument(
"--use-budget", action="store_true", help="use the budget from the pretrained model."
)
parser.add_argument(
"--ignore-pretrained-weights", action="store_true", help="ignore the weights of a pretrained model."
)
args = parser.parse_args()
get_config(args)
return args
def get_config(args):
# get commands from command line
override_args = _parser.argv_to_vars(sys.argv)
# load yaml file
yaml_txt = open(args.config).read()
# override args
loaded_yaml = yaml.load(yaml_txt, Loader=yaml.FullLoader)
for v in override_args:
loaded_yaml[v] = getattr(args, v)
print(f"=> Reading YAML config from {args.config}")
args.__dict__.update(loaded_yaml)
def run_args():
global args
if args is None:
args = parse_arguments()
run_args()