-
Notifications
You must be signed in to change notification settings - Fork 117
/
ApproxFFT.ino
374 lines (325 loc) · 9.82 KB
/
ApproxFFT.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
//-----------------------------FFT Function----------------------------------------------//
/*
Code to perform High speed and Accurate FFT on arduino,
setup:
1. in[] : Data array,
2. N : Number of sample (recommended sample size 2,4,8,16,32,64,128,256,512...)
3. Frequency: sampling frequency required as input (Hz)
It will by default return frequency with max aplitude,
if you need complex output or magnitudes uncomment required sections
If sample size is not in power of 2 it will be clipped to lower side of number.
i.e, for 150 number of samples, code will consider first 128 sample, remaining sample will be omitted.
For Arduino nano, FFT of more than 256 sample not possible due to mamory limitation
Code by ABHILASH
Contact: abhilashpatel121@gmail.com
Documentation & details: https://www.instructables.com/member/abhilash_patel/instructables/
Update(06/05/21): Correction made for support on Arduino Due
*/
//---------------------------------lookup data------------------------------------//
byte isin_data[128] =
{ 0, 1, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20,
22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42,
44, 45, 46, 48, 49, 50, 52, 53, 54, 56, 57, 59, 60, 61, 63, 64, 65,
67, 68, 70, 71, 72, 74, 75, 77, 78, 80, 81, 82, 84, 85, 87, 88, 90,
91, 93, 94, 96, 97, 99, 100, 102, 104, 105, 107, 108, 110, 112, 113, 115, 117,
118, 120, 122, 124, 125, 127, 129, 131, 133, 134, 136, 138, 140, 142, 144, 146, 148,
150, 152, 155, 157, 159, 161, 164, 166, 169, 171, 174, 176, 179, 182, 185, 188, 191,
195, 198, 202, 206, 210, 215, 221, 227, 236
};
unsigned int Pow2[14] = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096};
byte RSSdata[20] = {7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2};
//---------------------------------------------------------------------------------//
float Approx_FFT(int in[], unsigned int N, float Frequency)
{
int a, c1, f, o = 0, x, data_max, data_min = 0;
long data_avg, data_mag, temp11;
byte scale, check = 0;
data_max = 0;
data_avg = 0;
data_min = 0;
for (int i = 0; i < 12; i++) //calculating the levels
{
if (Pow2[i] <= N) {
o = i;
}
}
a = Pow2[o];
int out_r[a]; //real part of transform
int out_im[a]; //imaginory part of transform
for (int i = 0; i < a; i++) //getting min max and average for scalling
{ out_r[i] = 0; out_im[i] = 0;
data_avg = data_avg + in[i];
if (in[i] > data_max) {
data_max = in[i];
}
if (in[i] < data_min) {
data_min = in[i];
}
}
data_avg = data_avg >> o;
scale = 0;
data_mag = data_max - data_min;
temp11 = data_mag;
//scalling data from +512 to -512
if (data_mag > 1024)
{ while (temp11 > 1024)
{ temp11 = temp11 >> 1;
scale = scale + 1;
}
}
if (data_mag < 1024)
{ while (temp11 < 1024)
{ temp11 = temp11 << 1;
scale = scale + 1;
}
}
if (data_mag > 1024)
{
for (int i = 0; i < a; i++)
{ in[i] = in[i] - data_avg;
in[i] = in[i] >> scale;
}
scale = 128 - scale;
}
if (data_mag < 1024)
{ scale = scale - 1;
for (int i = 0; i < a; i++)
{
in[i] = in[i] - data_avg;
in[i] = in[i] << scale;
}
scale = 128 + scale;
}
x = 0;
for (int b = 0; b < o; b++) // bit reversal order stored in im_out array
{
c1 = Pow2[b];
f = Pow2[o] / (c1 + c1);
for (int j = 0; j < c1; j++)
{
x = x + 1;
out_im[x] = out_im[j] + f;
}
}
for (int i = 0; i < a; i++) // update input array as per bit reverse order
{
out_r[i] = in[out_im[i]];
out_im[i] = 0;
}
int i10, i11, n1, tr, ti;
float e;
int c, temp4;
for (int i = 0; i < o; i++) //fft
{
i10 = Pow2[i]; // overall values of sine/cosine
i11 = Pow2[o] / Pow2[i + 1]; // loop with similar sine cosine
e = 1024 / Pow2[i + 1]; //1024 is equivalent to 360 deg
e = 0 - e;
n1 = 0;
for (int j = 0; j < i10; j++)
{
c = e * j; //c is angle as where 1024 unit is 360 deg
while (c < 0) {
c = c + 1024;
}
while (c > 1024) {
c = c - 1024;
}
n1 = j;
for (int k = 0; k < i11; k++)
{
temp4 = i10 + n1;
if (c == 0) {
tr = out_r[temp4];
ti = out_im[temp4];
}
else if (c == 256) {
tr = -out_im[temp4];
ti = out_r[temp4];
}
else if (c == 512) {
tr = -out_r[temp4];
ti = -out_im[temp4];
}
else if (c == 768) {
tr = out_im[temp4];
ti = -out_r[temp4];
}
else if (c == 1024) {
tr = out_r[temp4];
ti = out_im[temp4];
}
else {
tr = fast_cosine(out_r[temp4], c) - fast_sine(out_im[temp4], c); //the fast sine/cosine function gives direct (approx) output for A*sinx
ti = fast_sine(out_r[temp4], c) + fast_cosine(out_im[temp4], c);
}
out_r[n1 + i10] = out_r[n1] - tr;
out_r[n1] = out_r[n1] + tr;
if (out_r[n1] > 15000 || out_r[n1] < -15000) {
check = 1; //check for int size, it can handle only +31000 to -31000,
}
out_im[n1 + i10] = out_im[n1] - ti;
out_im[n1] = out_im[n1] + ti;
if (out_im[n1] > 15000 || out_im[n1] < -15000) {
check = 1;
}
n1 = n1 + i10 + i10;
}
}
if (check == 1) { // scalling the matrics if value higher than 15000 to prevent varible from overflowing
for (int i = 0; i < a; i++)
{
out_r[i] = out_r[i] >> 1;
out_im[i] = out_im[i] >> 1;
}
check = 0;
scale = scale - 1; // tracking overall scalling of input data
}
}
if (scale > 128)
{ scale = scale - 128;
for (int i = 0; i < a; i++)
{ out_r[i] = out_r[i] >> scale;
out_im[i] = out_im[i] >> scale;
}
scale = 0;
} // revers all scalling we done till here,
else {
scale = 128 - scale; // in case of nnumber getting higher than 32000, we will represent in as multiple of 2^scale
}
/*
for(int i=0;i<a;i++)
{
Serial.print(out_r[i]);Serial.print("\t"); // un comment to print RAW o/p
Serial.print(out_im[i]);
Serial.print("i");Serial.print("\t");
Serial.print("*2^");Serial.println(scale);
}
*/
//---> here onward out_r contains amplitude and our_in conntains frequency (Hz)
int fout, fm, fstp;
float fstep;
fstep = Frequency / N;
fstp = fstep;
fout = 0; fm = 0;
for (unsigned int i = 1; i < Pow2[o - 1]; i++) // getting amplitude from compex number
{
out_r[i] = fastRSS(out_r[i], out_im[i]);
// Approx RSS function used to calculated magnitude quickly
out_im[i] = out_im[i] + fstp;
if (fout < out_r[i]) {
fm = i;
fout = out_r[i];
}
// un comment to print Amplitudes (1st value (offset) is not printed)
//Serial.print(out_r[i]); Serial.print("\t");
//Serial.print("*2^");Serial.println(scale);
in[i - 1] = out_r[i];
}
float fa, fb, fc;
fa = out_r[fm - 1];
fb = out_r[fm];
fc = out_r[fm + 1];
fstep = (fa * (fm - 1) + fb * fm + fc * (fm + 1)) / (fa + fb + fc);
return (fstep * Frequency / N);
}
//---------------------------------fast sine/cosine---------------------------------------//
int fast_sine(int Amp, int th)
{
int temp3, m1, m2;
byte temp1, temp2, test, quad, accuracy;
accuracy = 5; // set it value from 1 to 7, where 7 being most accurate but slowest
// accuracy value of 5 recommended for typical applicaiton
while (th > 1024) {
th = th - 1024; // here 1024 = 2*pi or 360 deg
}
while (th < 0) {
th = th + 1024;
}
quad = th >> 8;
if (quad == 1) {
th = 512 - th;
}
else if (quad == 2) {
th = th - 512;
}
else if (quad == 3) {
th = 1024 - th;
}
temp1 = 0;
temp2 = 128; //2 multiple
m1 = 0;
m2 = Amp;
temp3 = (m1 + m2) >> 1;
Amp = temp3;
for (int i = 0; i < accuracy; i++)
{ test = (temp1 + temp2) >> 1;
temp3 = temp3 >> 1;
if (th > isin_data[test]) {
temp1 = test;
Amp = Amp + temp3;
m1 = Amp;
}
else if (th < isin_data[test]) {
temp2 = test;
Amp = Amp - temp3;
m2 = Amp;
}
}
if (quad == 2) {
Amp = 0 - Amp;
}
else if (quad == 3) {
Amp = 0 - Amp;
}
return (Amp);
}
int fast_cosine(int Amp, int th)
{
th = 256 - th; //cos th = sin (90-th) formula
return (fast_sine(Amp, th));
}
//--------------------------------------------------------------------------------//
//--------------------------------Fast RSS----------------------------------------//
int fastRSS(int a, int b)
{ if (a == 0 && b == 0) {
return (0);
}
int min, max, temp1, temp2;
byte clevel;
if (a < 0) {
a = -a;
}
if (b < 0) {
b = -b;
}
clevel = 0;
if (a > b) {
max = a;
min = b;
} else {
max = b;
min = a;
}
if (max > (min + min + min))
{
return max;
}
else
{
temp1 = min >> 3; if (temp1 == 0) {
temp1 = 1;
}
temp2 = min;
while (temp2 < max) {
temp2 = temp2 + temp1;
clevel = clevel + 1;
}
temp2 = RSSdata[clevel]; temp1 = temp1 >> 1;
for (int i = 0; i < temp2; i++) {
max = max + temp1;
}
return (max);
}
}
//--------------------------------------------------------------------------------//