-
Notifications
You must be signed in to change notification settings - Fork 233
MIOpen Logger to Driver Decoder for Convolutions
miopenStatus_t miopenConvolutionForward(miopenHandle_t, const void*, miopenTensorDescriptor_t, const void*, miopenTensorDescriptor_t, const void*, miopenConvolutionDescriptor_t, miopenConvFwdAlgorithm_t, const void*, miopenTensorDescriptor_t, void*, void*, size_t){
alpha = 0x7ffd8b2cdd84
xDesc = 100, 3, 32, 32
x = 0x7f8e22e5b410
wDesc = 32, 3, 3, 3
w = 0x7f8e22e5b990
convDesc = 0, 0, 1, 1, 1, 1,
algo = 1
beta = 0x7ffd8b2cdd88
yDesc = 100, 32, 30, 30
y = 0x7f8e22e8ff60
workSpace = 0x7f8e22e5ac70
workSpaceSize = 97200
}
The lines of interest are:
-
xDesc = 100, 3, 32, 32
== < n, c, H, W > -
wDesc = 32, 3, 3, 3
== < k, c, y, x > -
convDesc = 0, 0, 1, 1, 1, 1
== < p, q, u, v, l, j >
miopenStatus_t miopenConvolutionBackwardData(miopenHandle_t, const void*, miopenTensorDescriptor_t, const void*, miopenTensorDescriptor_t, const void*, miopenConvolutionDescriptor_t, miopenConvBwdDataAlgorithm_t, const void*, miopenTensorDescriptor_t, void*, void*, size_t){
alpha = 0x7ffd8b2cdd64
dyDesc = 100, 32, 30, 30
dy = 0x7f8e22e8fca0
wDesc = 32, 3, 3, 3
w = 0x7f8e22e5b990
convDesc = 0, 0, 1, 1, 1, 1,
algo = 1
beta = 0x7ffd8b2cdd68
dxDesc = 100, 3, 32, 32
dx = 0x7f8e22e5b6d0
workSpace = 0x7f8e22e5a9b0
workSpaceSize = 345600
}
The lines of interest are:
-
dxDesc = 100, 3, 32, 32
== < n, c, H, W > -
wDesc = 32, 3, 3, 3
== < k, c, y, x > -
convDesc = 0, 0, 1, 1, 1, 1
== < p, q, u, v, l, j >
miopenStatus_t miopenConvolutionBackwardWeights(miopenHandle_t, const void*, miopenTensorDescriptor_t, const void*, miopenTensorDescriptor_t, const void*, miopenConvolutionDescriptor_t, miopenConvBwdWeightsAlgorithm_t, const void*, miopenTensorDescriptor_t, void*, void*, size_t){
alpha = 0x7ffd8b2cdd64
dyDesc = 100, 32, 30, 30
dy = 0x7f8e22e8fca0
xDesc = 100, 3, 32, 32
x = 0x7f8e22e5b410
convDesc = 0, 0, 1, 1, 1, 1,
algo = 1
beta = 0x7ffd8b2cdd68
dwDesc = 32, 3, 3, 3
dw = 0x7f8e22e8f9e0
workSpace = 0x7f8e22e5a9b0
workSpaceSize = 345600
}
The lines of interest are:
-
xDesc = 100, 3, 32, 32
== < n, c, H, W > -
dwDesc = 32, 3, 3, 3
== < k, c, y, x > -
convDesc = 0, 0, 1, 1, 1, 1
== < p, q, u, v, l, j >
Once the values n, c, H, W, k, x, y, p, q, l, j
have been extracted from the log as shown above, they can be plugged into the MIOpenDriver conv
command line.
miopenStatus_t miopenRNNForwardTraining(miopenHandle_t, miopenRNNDescriptor_t, int, miopenTensorDescriptor**, const void*, miopenTensorDescriptor_t, const void*, miopenTensorDescriptor_t, const void*, miopenTensorDescriptor_t, const void*, miopenTensorDescriptor**, void*, miopenTensorDescriptor_t, void*, miopenTensorDescriptor_t, void*, void*, size_t, void*, size_t){
rnnDesc = 512, 3, 4, 6, 2, 0, 0, 0, 0,
sequenceLen = 10
xDesc = 0xe0d1c0
x = 0xe05a80
hxDesc = 3, 4, 512
hx = 0xdff280
cxDesc = 3, 4, 512
cx = 0xdff470
wDesc = 3584, 2048
w = 0xdfa690
yDesc = 0xdd2630
y = 0xdfac40
hyDesc = 3, 4, 512
hy = 0xdff660
cyDesc = 3, 4, 512
cy = 0xdff850
}
The lines of interest are:
-
xDesc
is an array of tensor descriptors -
rnnDesc = 512, 3, 4, 6, 2, 0, 0, 0, 0,
== < hiddenSize, nlayers, nHiddenTensorsPerLayer, workspaceScale, rnnMode, dirMode, algoMode, inputMode, biasMode > -
hxDesc = 3, 4, 512
== < nlayersTensor, xDescMaxFirstDim, hiddenSize > -
cxDesc = 3, 4, 512
== < nlayersTensor, xDescMaxFirstDim, hiddenSize > -
wDesc
is a weights tensor descriptor, which is calculated by MIOpen -
hyDesc = 3, 4, 512
== < nlayersTensor, xDescMaxFirstDim, hiddenSize > -
cyDesc = 3, 4, 512
== < nlayersTensor, xDescMaxFirstDim, hiddenSize >
xDescMaxFirstDim is the largest first dimension of the xDesc
tensor descriptor array.
nlayersTensor equals twice to nlayers
if the dirMode
is bidirectional.
miopenStatus_t miopenRNNBackwardData(miopenHandle_t, miopenRNNDescriptor_t, int, miopenTensorDescriptor**, const void*, miopenTensorDescriptor**, const void*, miopenTensorDescriptor_t, const void*, miopenTensorDescriptor_t, const void*, miopenTensorDescriptor_t, const void*, miopenTensorDescriptor_t, const void*, miopenTensorDescriptor_t, const void*, miopenTensorDescriptor**, void*, miopenTensorDescriptor_t, void*, miopenTensorDescriptor_t, void*, void*, size_t, void*, size_t){
rnnDesc = 512, 3, 4, 6, 2, 0, 0, 0, 0,
sequenceLen = 10
yDesc = 0xdd2630
y = 0xdfac40
dyDesc = 0xdd2630
dy = 0xdfaa50
dhyDesc = 3, 4, 512
dhy = 0xd3a340
dcyDesc = 3, 4, 512
dcy = 0xd3a530
wDesc = 3584, 2048
w = 0xdfa690
hxDesc = 3, 4, 512
hx = 0xdff280
cxDesc = 3, 4, 512
cx = 0xdff470
}
The lines of interest are:
-
rnnDesc = 512, 3, 4, 6, 2, 1, 0, 0, 0,
== < hiddenSize, nlayers, nHiddenTensorsPerLayer, workspaceScale, rnnMode, dirMode, algoMode, inputMode, biasMode > -
yDesc
is an array of tensor descriptors -
dyDesc
is an array of fully packed tensor descriptors associated with the output from each time step -
dhyDesc = 3, 4, 512
== < nlayersTensor , xDescMaxFirstDim, hiddenSize > -
dcyDesc = 3, 4, 512
== < nlayersTensor , xDescMaxFirstDim, hiddenSize > -
wDesc
is a weights tensor descriptor -
hxDesc = 3, 4, 512
== < nlayersTensor , xDescMaxFirstDim, hiddenSize > -
cxDesc = 3, 4, 512
== < nlayersTensor , xDescMaxFirstDim, hiddenSize >
xDescMaxFirstDim is the largest first dimension of the xDesc
tensor descriptor array.
nlayersTensor equals twice to nlayers
if the dirMode
is bidirectional.
miopenStatus_t miopenRNNBackwardWeights(miopenHandle_t, miopenRNNDescriptor_t, int, miopenTensorDescriptor**, const void*, miopenTensorDescriptor_t, const void*, miopenTensorDescriptor**, const void*, miopenTensorDescriptor_t, void*, void*, size_t, const void*, size_t){
rnnDesc = 512, 3, 4, 6, 2, 0, 0, 0, 0,
sequenceLen = 10
xDesc = 0xe0d1c0
x = 0xe05a80
hxDesc = 3, 4, 512
hx = 0xdff280
yDesc = 0xdd2630
y = 0xdfaa50
dwDesc = 3584, 2048
dw = 0xdfa860
workSpace = 0xde13e0
workSpaceNumBytes = 1032192
reserveSpace = 0xde15d0
reserveSpaceNumBytes = 2064384
}
The lines of interest are:
-
rnnDesc = 512, 3, 4, 6, 2, 1, 0, 0, 0,
== < hiddenSize, nlayers, nHiddenTensorsPerLayer, workspaceScale, rnnMode, dirMode, algoMode, inputMode, biasMode > -
xDesc
is an array of tensor descriptors -
hxDesc = 3, 4, 512
== < nlayersTensor , xDescMaxFirstDim, hiddenSize > -
dwDesc
is a weights tensor descriptor
xDescMaxFirstDim is the largest first dimension of the xDesc
tensor descriptor array.
nlayersTensor equals twice to nlayers
if the dirMode
is bidirectional.