forked from Dao-AILab/flash-attention
-
Notifications
You must be signed in to change notification settings - Fork 46
/
flash_attn_interface.py
509 lines (453 loc) · 26.7 KB
/
flash_attn_interface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
import torch
import torch.nn as nn
import flash_attn_2_cuda as flash_attn_cuda
from einops import rearrange
def _get_block_size(device, head_dim, is_dropout, is_causal):
# This should match the block sizes in the CUDA kernel
assert head_dim <= 256
major, minor = torch.cuda.get_device_capability(device)
is_sm8x = major == 8 and minor > 0 # Only include sm86 and sm89, exclude sm80 (A100)
is_sm80 = major == 8 and minor == 0
is_sm90 = major == 9 and minor == 0
if head_dim <= 32:
return 128, 128
if head_dim <= 64:
return (128, 128) if not is_dropout else (128, 64)
elif head_dim <= 96:
return (64, 64) if (is_sm8x and is_causal) else (128, 64)
elif head_dim <= 128:
if is_sm8x:
return (64, 64) if (not is_dropout and is_causal) else (128, 32)
else:
return 128, (64 if not is_dropout else 32)
elif head_dim <= 160:
if is_sm8x:
return (128, 64) if not is_causal else (64, 64)
else:
return 128, 32
elif head_dim <= 192:
return (128, 64) if not is_dropout else (64, 64)
elif head_dim <= 224:
return (128, 64) if (is_sm80 or is_sm90) else (64, 64)
elif head_dim <= 256:
return (128, 64) if is_sm80 else (64, 64)
def _flash_attn_forward(q, k, v, dropout_p, softmax_scale, causal, return_softmax):
maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd(
q, k, v, None, dropout_p, softmax_scale, causal, return_softmax, None
)
return out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state
def _flash_attn_varlen_forward(q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p, softmax_scale, causal, return_softmax):
maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.varlen_fwd(
q, k, v, None, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p,
softmax_scale, False, causal, return_softmax, None
)
# if out.isnan().any() or softmax_lse.isnan().any():
# breakpoint()
return out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state
def _flash_attn_backward(dout, q, k, v, out, softmax_lse, dq, dk, dv,
dropout_p, softmax_scale, causal, rng_state=None):
maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
# dq, dk, dv are allocated by us so they should already be contiguous
dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
dq, dk, dv, softmax_d, = flash_attn_cuda.bwd(
dout, q, k, v, out, softmax_lse, dq, dk, dv, dropout_p,
softmax_scale, causal, None, rng_state
)
return dq, dk, dv, softmax_d
def _flash_attn_varlen_backward(dout, q, k, v, out, softmax_lse, dq, dk, dv,
cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p, softmax_scale, causal, rng_state=None):
maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
# dq, dk, dv are allocated by us so they should already be contiguous
dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
dq, dk, dv, softmax_d, = flash_attn_cuda.varlen_bwd(
dout, q, k, v, out, softmax_lse, dq, dk, dv, cu_seqlens_q, cu_seqlens_k,
max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, False, causal, None, rng_state
)
# if dk.isnan().any() or dk.isnan().any() or dv.isnan().any() or softmax_d.isnan().any():
# breakpoint()
return dq, dk, dv, softmax_d
class FlashAttnQKVPackedFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, qkv, dropout_p, softmax_scale, causal, return_softmax):
if softmax_scale is None:
softmax_scale = qkv.shape[-1] ** (-0.5)
out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward(
qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], dropout_p, softmax_scale,
causal=causal, return_softmax=return_softmax and dropout_p > 0
)
ctx.save_for_backward(q, k, v, out_padded, softmax_lse, rng_state)
ctx.dropout_p = dropout_p
ctx.softmax_scale = softmax_scale
ctx.causal = causal
return out if not return_softmax else (out, softmax_lse, S_dmask)
@staticmethod
def backward(ctx, dout, *args):
q, k, v, out, softmax_lse, rng_state = ctx.saved_tensors
qkv_shape = q.shape[:-2] + (3, *q.shape[-2:])
dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device)
_flash_attn_backward(
dout, q, k, v, out, softmax_lse, dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2],
ctx.dropout_p, ctx.softmax_scale, ctx.causal, rng_state=rng_state
)
dqkv = dqkv[..., :dout.shape[-1]] # We could have padded the head dimension
return dqkv, None, None, None, None
class FlashAttnVarlenQKVPackedFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, qkv, cu_seqlens, max_seqlen, dropout_p, softmax_scale, causal, return_softmax):
if softmax_scale is None:
softmax_scale = qkv.shape[-1] ** (-0.5)
out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_varlen_forward(
qkv[:, 0], qkv[:, 1], qkv[:, 2], cu_seqlens, cu_seqlens, max_seqlen, max_seqlen,
dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax and dropout_p > 0
)
ctx.save_for_backward(q, k, v, out_padded, softmax_lse, cu_seqlens, rng_state)
ctx.dropout_p = dropout_p
ctx.max_seqlen = max_seqlen
ctx.softmax_scale = softmax_scale
ctx.causal = causal
return out if not return_softmax else (out, softmax_lse, S_dmask)
@staticmethod
def backward(ctx, dout, *args):
q, k, v, out, softmax_lse, cu_seqlens, rng_state = ctx.saved_tensors
qkv_shape = q.shape[:-2] + (3, *q.shape[-2:])
dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device)
_flash_attn_varlen_backward(
dout, q, k, v, out, softmax_lse, dqkv[:, 0], dqkv[:, 1], dqkv[:, 2],
cu_seqlens, cu_seqlens, ctx.max_seqlen, ctx.max_seqlen,
ctx.dropout_p, ctx.softmax_scale, ctx.causal, rng_state=rng_state
)
dqkv = dqkv[..., :dout.shape[-1]] # We could have padded the head dimension
return dqkv, None, None, None, None, None, None
class FlashAttnKVPackedFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, q, kv, dropout_p, softmax_scale, causal, return_softmax):
if softmax_scale is None:
softmax_scale = q.shape[-1] ** (-0.5)
out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward(
q, kv[:, :, 0], kv[:, :, 1], dropout_p, softmax_scale, causal=causal,
return_softmax=return_softmax and dropout_p > 0
)
ctx.save_for_backward(q, k, v, out_padded, softmax_lse, rng_state)
ctx.dropout_p = dropout_p
ctx.softmax_scale = softmax_scale
ctx.causal = causal
return out if not return_softmax else (out, softmax_lse, S_dmask)
@staticmethod
def backward(ctx, dout, *args):
q, k, v, out, softmax_lse, rng_state = ctx.saved_tensors
dq = torch.empty_like(q)
kv_shape = k.shape[:-2] + (2, *k.shape[-2:])
dkv = torch.empty(kv_shape, dtype=k.dtype, device=k.device)
_flash_attn_backward(
dout, q, k, v, out, softmax_lse,
dq, dkv[:, :, 0], dkv[:, :, 1], ctx.dropout_p, ctx.softmax_scale, ctx.causal,
rng_state=rng_state
)
dq = dq[..., :dout.shape[-1]] # We could have padded the head dimension
dkv = dkv[..., :dout.shape[-1]]
return dq, dkv, None, None, None, None
class FlashAttnVarlenKVPackedFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, q, kv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p,
softmax_scale, causal, return_softmax):
if softmax_scale is None:
softmax_scale = q.shape[-1] ** (-0.5)
out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_varlen_forward(
q, kv[:, 0], kv[:, 1], cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax and dropout_p > 0
)
ctx.save_for_backward(q, k, v, out_padded, softmax_lse,
cu_seqlens_q, cu_seqlens_k, rng_state)
ctx.dropout_p = dropout_p
ctx.max_seqlen_q = max_seqlen_q
ctx.max_seqlen_k = max_seqlen_k
ctx.softmax_scale = softmax_scale
ctx.causal = causal
return out if not return_softmax else (out, softmax_lse, S_dmask)
@staticmethod
def backward(ctx, dout, *args):
q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state = ctx.saved_tensors
dq = torch.empty_like(q)
kv_shape = k.shape[:-2] + (2, *k.shape[-2:])
dkv = torch.empty(kv_shape, dtype=k.dtype, device=k.device)
_flash_attn_varlen_backward(
dout, q, k, v, out, softmax_lse, dq, dkv[:, 0], dkv[:, 1],
cu_seqlens_q, cu_seqlens_k, ctx.max_seqlen_q, ctx.max_seqlen_k,
ctx.dropout_p, ctx.softmax_scale, ctx.causal, rng_state=rng_state
)
dq = dq[..., :dout.shape[-1]] # We could have padded the head dimension
dkv = dkv[..., :dout.shape[-1]]
return dq, dkv, None, None, None, None, None, None, None, None
class FlashAttnFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, q, k, v, dropout_p, softmax_scale, causal, return_softmax):
if softmax_scale is None:
softmax_scale = q.shape[-1] ** (-0.5)
out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward(
q, k, v, dropout_p, softmax_scale, causal=causal,
return_softmax=return_softmax and dropout_p > 0
)
ctx.save_for_backward(q, k, v, out_padded, softmax_lse, rng_state)
ctx.dropout_p = dropout_p
ctx.softmax_scale = softmax_scale
ctx.causal = causal
return out if not return_softmax else (out, softmax_lse, S_dmask)
@staticmethod
def backward(ctx, dout, *args):
q, k, v, out, softmax_lse, rng_state = ctx.saved_tensors
dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
_flash_attn_backward(
dout, q, k, v, out, softmax_lse,
dq, dk, dv, ctx.dropout_p, ctx.softmax_scale, ctx.causal,
rng_state=rng_state
)
dq = dq[..., :dout.shape[-1]] # We could have padded the head dimension
dk = dk[..., :dout.shape[-1]]
dv = dv[..., :dout.shape[-1]]
return dq, dk, dv, None, None, None, None, None, None, None, None
class FlashAttnVarlenFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p,
softmax_scale, causal, return_softmax):
if softmax_scale is None:
softmax_scale = q.shape[-1] ** (-0.5)
out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_varlen_forward(
q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax and dropout_p > 0
)
ctx.save_for_backward(q, k, v, out_padded, softmax_lse,
cu_seqlens_q, cu_seqlens_k, rng_state)
ctx.dropout_p = dropout_p
ctx.max_seqlen_q = max_seqlen_q
ctx.max_seqlen_k = max_seqlen_k
ctx.softmax_scale = softmax_scale
ctx.causal = causal
return out if not return_softmax else (out, softmax_lse, S_dmask)
@staticmethod
def backward(ctx, dout, *args):
q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state = ctx.saved_tensors
dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
_flash_attn_varlen_backward(
dout, q, k, v, out, softmax_lse, dq, dk, dv, cu_seqlens_q, cu_seqlens_k,
ctx.max_seqlen_q, ctx.max_seqlen_k, ctx.dropout_p, ctx.softmax_scale, ctx.causal,
rng_state=rng_state
)
dq = dq[..., :dout.shape[-1]] # We could have padded the head dimension
dk = dk[..., :dout.shape[-1]]
dv = dv[..., :dout.shape[-1]]
return dq, dk, dv, None, None, None, None, None, None, None, None
def flash_attn_qkvpacked_func(qkv, dropout_p=0.0, softmax_scale=None, causal=False,
return_attn_probs=False):
"""dropout_p should be set to 0.0 during evaluation
If Q, K, V are already stacked into 1 tensor, this function will be faster than
calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
of the gradients of Q, K, V.
For multi-query and grouped-query attention (MQA/GQA), please see
flash_attn_kvpacked_func and flash_attn_func.
Arguments:
qkv: (batch_size, seqlen, 3, nheads, headdim)
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
Default to 1 / sqrt(headdim).
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
testing only. The returned probabilities are not guaranteed to be correct
(they might not have the right scaling).
Return:
out: (batch_size, seqlen, nheads, headdim).
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
normalization factor).
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
The output of softmax (possibly with different scaling). It also encodes the dropout
pattern (negative means that location was dropped, nonnegative means it was kept).
"""
return FlashAttnQKVPackedFunc.apply(qkv, dropout_p, softmax_scale, causal, return_attn_probs)
def flash_attn_kvpacked_func(q, kv, dropout_p=0.0, softmax_scale=None, causal=False,
return_attn_probs=False):
"""dropout_p should be set to 0.0 during evaluation
If K, V are already stacked into 1 tensor, this function will be faster than
calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
of the gradients of K, V.
Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
Arguments:
q: (batch_size, seqlen, nheads, headdim)
kv: (batch_size, seqlen, 2, nheads_k, headdim)
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
Default to 1 / sqrt(headdim).
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
testing only. The returned probabilities are not guaranteed to be correct
(they might not have the right scaling).
Return:
out: (batch_size, seqlen, nheads, headdim).
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
normalization factor).
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
The output of softmax (possibly with different scaling). It also encodes the dropout
pattern (negative means that location was dropped, nonnegative means it was kept).
"""
return FlashAttnKVPackedFunc.apply(q, kv, dropout_p, softmax_scale, causal, return_attn_probs)
def flash_attn_func(q, k, v, dropout_p=0.0, softmax_scale=None, causal=False,
return_attn_probs=False):
"""dropout_p should be set to 0.0 during evaluation
Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
Arguments:
q: (batch_size, seqlen, nheads, headdim)
k: (batch_size, seqlen, nheads_k, headdim)
v: (batch_size, seqlen, nheads_k, headdim)
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
Default to 1 / sqrt(headdim).
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
testing only. The returned probabilities are not guaranteed to be correct
(they might not have the right scaling).
Return:
out: (batch_size, seqlen, nheads, headdim).
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
normalization factor).
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
The output of softmax (possibly with different scaling). It also encodes the dropout
pattern (negative means that location was dropped, nonnegative means it was kept).
"""
return FlashAttnFunc.apply(q, k, v, dropout_p, softmax_scale, causal, return_attn_probs)
def flash_attn_varlen_qkvpacked_func(qkv, cu_seqlens, max_seqlen, dropout_p=0.0, softmax_scale=None,
causal=False, return_attn_probs=False):
"""dropout_p should be set to 0.0 during evaluation
If Q, K, V are already stacked into 1 tensor, this function will be faster than
calling flash_attn_varlen_func on Q, K, V since the backward pass avoids explicit concatenation
of the gradients of Q, K, V.
For multi-query and grouped-query attention (MQA/GQA), please see
flash_attn_varlen_kvpacked_func and flash_attn_varlen_func.
Arguments:
qkv: (total, 3, nheads, headdim), where total = total number of tokens in the batch.
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into qkv.
max_seqlen: int. Maximum sequence length in the batch.
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
Default to 1 / sqrt(headdim).
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
testing only. The returned probabilities are not guaranteed to be correct
(they might not have the right scaling).
Return:
out: (total, nheads, headdim).
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
normalization factor).
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
The output of softmax (possibly with different scaling). It also encodes the dropout
pattern (negative means that location was dropped, nonnegative means it was kept).
"""
return FlashAttnVarlenQKVPackedFunc.apply(
qkv, cu_seqlens, max_seqlen, dropout_p, softmax_scale, causal, return_attn_probs
)
def flash_attn_varlen_kvpacked_func(q, kv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p=0.0, softmax_scale=None, causal=False,
return_attn_probs=False):
"""dropout_p should be set to 0.0 during evaluation
If K, V are already stacked into 1 tensor, this function will be faster than
calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
of the gradients of K, V.
Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
Arguments:
q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch.
kv: (total_k, 2, nheads_k, headdim), where total_k = total number of key tokens in the batch.
cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into q.
cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into kv.
max_seqlen_q: int. Maximum query sequence length in the batch.
max_seqlen_k: int. Maximum key sequence length in the batch.
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
Default to 1 / sqrt(headdim).
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
testing only. The returned probabilities are not guaranteed to be correct
(they might not have the right scaling).
Return:
out: (total, nheads, headdim).
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
normalization factor).
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
The output of softmax (possibly with different scaling). It also encodes the dropout
pattern (negative means that location was dropped, nonnegative means it was kept).
"""
return FlashAttnVarlenKVPackedFunc.apply(
q, kv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p, softmax_scale, causal, return_attn_probs
)
def flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p=0.0, softmax_scale=None, causal=False,
return_attn_probs=False):
"""dropout_p should be set to 0.0 during evaluation
Supports multi-query and grouped-query attention (MQA/GQA) by passing in K, V with fewer heads
than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
Arguments:
q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch.
k: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch.
v: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch.
cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into q.
cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into kv.
max_seqlen_q: int. Maximum query sequence length in the batch.
max_seqlen_k: int. Maximum key sequence length in the batch.
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
Default to 1 / sqrt(headdim).
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
testing only. The returned probabilities are not guaranteed to be correct
(they might not have the right scaling).
Return:
out: (total, nheads, headdim).
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
normalization factor).
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
The output of softmax (possibly with different scaling). It also encodes the dropout
pattern (negative means that location was dropped, nonnegative means it was kept).
"""
return FlashAttnVarlenFunc.apply(
q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p, softmax_scale, causal, return_attn_probs
)
# Legacy Interface Support
def flash_attn_unpadded_qkvpacked_func(qkv, cu_seqlens, max_seqlen, dropout_p, softmax_scale=None,
causal=False, return_attn_probs=False):
return flash_attn_varlen_qkvpacked_func(qkv, cu_seqlens, max_seqlen, dropout_p, softmax_scale,
causal, return_attn_probs)
def flash_attn_unpadded_kvpacked_func(q, kv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p, softmax_scale=None, causal=False, return_attn_probs=False):
return flash_attn_varlen_kvpacked_func(q, kv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p, softmax_scale, causal, return_attn_probs)
def flash_attn_unpadded_func(q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p, softmax_scale=None,
causal=False, return_attn_probs=False):
return flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k,
dropout_p, softmax_scale, causal, return_attn_probs)