Skip to content

Latest commit

 

History

History
78 lines (49 loc) · 2.11 KB

CHANGELOG.md

File metadata and controls

78 lines (49 loc) · 2.11 KB

Change Log for hipSPARSELt

Full documentation for hipSPARSELt is available at rocm.docs.amd.com/projects/hipSPARSELt.

(Unreleased) hipSPARSELt 0.2.4 for ROCm 6.5.0

Added

  • Support for the LLVM target gfx950.
  • Support for the following data type combinations for the LLVM target gfx950:
    • FP8(E4M3) inputs, F32 output, and F32 Matrix Core accumulation.
    • BF8(E5M2) inputs, F32 output, and F32 Matrix Core accumulation.
  • Support for ROC-TX if HIPSPARSELT_ENABLE_MARKER=1 is set.
  • Support for the cuSPARSELt v0.6.3 backend.

Changed

  • Support for the LLVM target gfx940 and gfx941 has been removed.

Optimized

  • Improved the library loading time.
  • Provided more kernels for FP16 datatype.

(Unreleased) hipSPARSELt 0.2.3 for ROCm 6.4.0

Added

  • Support for alpha vector scaling.

Changed

  • Changed the check mechanism of the inputs when is using alpha vector scaling.

hipSPARSELt 0.2.2 for ROCm 6.3.0

Added

  • Support for a new data type combination: INT8 inputs, BF16 output, and INT32 Matrix Core accumulation.
  • Support for row-major memory order (HIPSPARSE_ORDER_ROW).

Changed

  • Changed the default compiler to amdclang++.

Upcoming changes

  • hipsparseLtDatatype_t is deprecated and will be removed in the next major release of ROCm. hipDataType should be used instead.

hipSPARSELt 0.2.1 for ROCm 6.2

Changed

  • Refined test cases

hipSPARSELt 0.2.0 for ROCm 6.1

Changes

  • Support Matrix B is a Structured Sparsity Matrix.

hipSPARSELt 0.1.0 for ROCm 6.0

Changes

  • Enabled hipSPARSELt APIs
  • Support for:
    • gfx940, gfx941, and gfx942 platforms
    • FP16, BF16, and INT8 problem types
    • ReLU, GELU, abs, sigmod, and tanh activation
    • GELU scaling
    • Bias vectors
    • cuSPARSELt v0.4 backend
  • Integrated with Tensile Lite kernel generator
  • Support for batched computation (single sparse x multiple dense and multiple sparse x single dense)
  • GoogleTest: hipsparselt-test
  • hipsparselt-bench benchmarking tool
  • Sample apps: example_spmm_strided_batched, example_prune, example_compress