-
Notifications
You must be signed in to change notification settings - Fork 241
/
Copy pathMIOpenLRNFwd.cl
713 lines (610 loc) · 23.1 KB
/
MIOpenLRNFwd.cl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#define PPCAT_NX(A, B) A##B
#define PPCAT(A, B) PPCAT_NX(A, B)
#define TWO 2
#define THREE 3
#define FOUR 4
#define EIGHT 8
#if MIOPEN_USE_FP16 == 1
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#define _FLOAT half
#endif
#if MIOPEN_USE_FP32 == 1
#define _FLOAT float
#endif
#define _FLOAT2 PPCAT(_FLOAT, TWO)
#define _FLOAT3 PPCAT(_FLOAT, THREE)
#define _FLOAT4 PPCAT(_FLOAT, FOUR)
#define _FLOAT8 PPCAT(_FLOAT, EIGHT)
#define DBG_OUT 0
#define UNUSED __attribute__((__unused__))
#define MLO_LRN_GROUP_SZ2 1
#define MLO_LRN_STRIDE 1
#define MLO_LRN_LEFT_PAD0 (((MLO_LRN_PRE_PAD0 + MLO_READ_UNIT - 1) / MLO_READ_UNIT) * MLO_READ_UNIT)
#define MLO_LRN_RIGHT_SIDE \
(((MLO_LRN_GROUP_SZ0 * MLO_LRN_N_HORIZ_OUT_PIX + MLO_LRN_PAD0 + MLO_READ_UNIT - 1) / \
MLO_READ_UNIT) * \
MLO_READ_UNIT)
#define MLO_LRN_LCL_DATA_WIDTH (MLO_LRN_LEFT_PAD0 + MLO_LRN_RIGHT_SIDE)
#define MLO_LCL_READ4 (MLO_LRN_LCL_DATA_WIDTH / MLO_READ_UNIT)
#define MLO_LRN_LCL_DATA_HEIGHT (MLO_LRN_GROUP_SZ1 * MLO_LRN_N_VERT_OUT_PIX + MLO_LRN_KERNEL_SZ - 1)
#define MLO_LRN_GROUP_SZ (MLO_LRN_GROUP_SZ2 * MLO_LRN_GROUP_SZ1 * MLO_LRN_GROUP_SZ0)
//#define MLO_LRN_PREPAD_SZ (MLO_LRN_KERNEL_SZ - 1)/2
struct LRNForwardParam
{
_FLOAT alphaoverarea;
_FLOAT alpha;
_FLOAT beta;
_FLOAT K;
};
#include "math_ops.h"
__attribute__((reqd_work_group_size(MLO_LRN_GROUP_SZ0, MLO_LRN_GROUP_SZ1, MLO_LRN_GROUP_SZ2)))
__kernel void
MIOpenLRNWithinChannel_PS(const __global _FLOAT* bot,
__global _FLOAT* top,
#if MLO_LRN_DO_SCALE
__global _FLOAT* scale,
#endif
_FLOAT alphaoverarea,
UNUSED _FLOAT alpha,
_FLOAT beta,
_FLOAT K)
{
// IT's taken from POOLING AVE with stride = 1'
__local _FLOAT bot_data[MLO_LRN_LCL_DATA_WIDTH * MLO_LRN_LCL_DATA_HEIGHT];
int x = get_group_id(0) * MLO_LRN_GROUP_SZ0 * MLO_LRN_N_HORIZ_OUT_PIX;
int y = get_group_id(1) * MLO_LRN_GROUP_SZ1 * MLO_LRN_N_VERT_OUT_PIX;
int lcl_id0 = get_local_id(0);
int lcl_id1 = get_local_id(1);
int ob = get_global_id(2); // output * batch_sz
int o = iDiv_legacy(ob, MLO_LRN_BATCH_SZ);
int b = iMod(ob, o, MLO_LRN_BATCH_SZ);
int bot_x = x;
int bot_y = y;
int bot_off = b * MLO_LRN_BOT_BATCH_STRIDE + o * MLO_LRN_BOT_CHANNEL_STRIDE;
// load tile
for(int b_j = lcl_id1; b_j < MLO_LRN_LCL_DATA_HEIGHT; b_j += MLO_LRN_GROUP_SZ1)
{
int bot_y_act = bot_y + b_j - MLO_LRN_PRE_PAD1;
bool invisibleY = (bot_y_act < 0) || (bot_y_act >= MLO_LRN_BOT_HEIGHT);
int bot_y_off = bot_y_act * MLO_LRN_BOT_STRIDE;
int lcl_off_v = mul24(b_j, (int)MLO_LRN_LCL_DATA_WIDTH);
for(int b_i = lcl_id0; b_i < MLO_LCL_READ4; b_i += MLO_LRN_GROUP_SZ0)
{
int bot_x_act = bot_x + (b_i * MLO_READ_UNIT) - MLO_LRN_LEFT_PAD0;
bool invisibleX;
for(int i = 0; i < MLO_READ_UNIT; ++i)
{
int bot_off_x = bot_off + bot_y_off + bot_x_act + i;
invisibleX = (bot_x_act + i < 0) || (bot_x_act + i >= MLO_LRN_BOT_WIDTH);
bot_off_x = (invisibleX || invisibleY) ? 0 : bot_off_x;
_FLOAT bot_val = bot[bot_off_x];
bot_val = (invisibleX || invisibleY) ? 0 : bot_val;
bot_data[lcl_off_v + (b_i * MLO_READ_UNIT) + i] = bot_val;
}
}
}
barrier(CLK_LOCAL_MEM_FENCE);
#if MLO_LRN_N_HORIZ_OUT_PIX > 1
_FLOAT partial_sum_x[MLO_LRN_N_HORIZ_OUT_PIX - 1]; // horizontal partial sum
#endif
#if MLO_LRN_N_VERT_OUT_PIX > 1
_FLOAT partial_sum_xy[MLO_LRN_N_VERT_OUT_PIX - 1]
[MLO_LRN_N_HORIZ_OUT_PIX]; // horizontal-vertical partial sums.
#endif
_FLOAT accum[MLO_LRN_N_VERT_OUT_PIX][MLO_LRN_N_HORIZ_OUT_PIX]; // accumulator
int top_y = mad24(lcl_id1, (int)MLO_LRN_N_VERT_OUT_PIX, y);
int top_x = mad24(lcl_id0, (int)MLO_LRN_N_HORIZ_OUT_PIX, x);
int lcl_y = mul24(lcl_id1, (int)MLO_LRN_N_VERT_OUT_PIX);
int lcl_x =
mad24(lcl_id0, (int)(MLO_LRN_N_HORIZ_OUT_PIX), (int)(MLO_LRN_LEFT_PAD0 - MLO_LRN_PRE_PAD0));
int lcl_off = mad24(lcl_y, MLO_LRN_LCL_DATA_WIDTH, lcl_x);
for(int j = 0; j < MLO_LRN_N_VERT_OUT_PIX; ++j)
{
for(int i = 0; i < MLO_LRN_N_HORIZ_OUT_PIX; ++i)
{
accum[j][i] = 0;
}
}
#if MLO_LRN_N_VERT_OUT_PIX > 1
for(int j = 0; j < MLO_LRN_N_VERT_OUT_PIX - 1; ++j)
{
for(int i = 0; i < MLO_LRN_N_HORIZ_OUT_PIX; ++i)
{
partial_sum_xy[j][i] = 0;
}
}
#endif
// running window summation
_FLOAT mov_accum;
int jj = 0;
int ii = 0;
// first to get vertica partial sums
#if MLO_LRN_N_VERT_OUT_PIX > 1
for(; jj < (int)(MLO_LRN_N_VERT_OUT_PIX - 1); ++jj)
{
for(ii = 0; ii < (int)(MLO_LRN_N_HORIZ_OUT_PIX - 1); ++ii)
{
_FLOAT bot_val = bot_data[lcl_off + jj * MLO_LRN_LCL_DATA_WIDTH + ii];
_FLOAT accum_tmp = bot_val * bot_val;
#if MLO_LRN_N_HORIZ_OUT_PIX > 1
// save horizontal partial sums
partial_sum_x[ii] = accum_tmp;
#endif
// accumulate in vert-horizontal(0)
partial_sum_xy[jj][0] += accum_tmp;
}
for(; ii < (int)MLO_LRN_KERNEL_SZ0; ++ii)
{
_FLOAT bot_val = bot_data[lcl_off + jj * MLO_LRN_LCL_DATA_WIDTH + ii];
_FLOAT accum_tmp = bot_val * bot_val;
// accumulate in vert horizontal(0)
partial_sum_xy[jj][0] += accum_tmp;
}
// running horizontal window
for(; ii < (int)(MLO_LRN_KERNEL_SZ0 + MLO_LRN_N_HORIZ_OUT_PIX - 1); ++ii)
{
_FLOAT bot_val = bot_data[lcl_off + jj * MLO_LRN_LCL_DATA_WIDTH + ii];
_FLOAT accum_tmp = bot_val * bot_val;
// calculate all vertical-horizontal partial sums
partial_sum_xy[jj][ii - MLO_LRN_KERNEL_SZ0 + 1] =
partial_sum_xy[jj][ii - MLO_LRN_KERNEL_SZ0] +
(accum_tmp
#if MLO_LRN_N_HORIZ_OUT_PIX > 1
- partial_sum_x[ii - MLO_LRN_KERNEL_SZ0]
#endif
);
}
// put into accumulator[0][i]
// whatever has been accumulated so far
for(int i = 0; i < MLO_LRN_N_HORIZ_OUT_PIX; ++i)
{
accum[0][i] += partial_sum_xy[jj][i];
}
}
#endif
// calculate row 0 accumulators
for(; jj < (int)MLO_LRN_KERNEL_SZ1; ++jj)
{
mov_accum = 0;
for(ii = 0; ii < (int)(MLO_LRN_N_HORIZ_OUT_PIX - 1); ++ii)
{
_FLOAT bot_val = bot_data[lcl_off + jj * MLO_LRN_LCL_DATA_WIDTH + ii];
_FLOAT accum_tmp = bot_val * bot_val;
#if MLO_LRN_N_HORIZ_OUT_PIX > 1
partial_sum_x[ii] = accum_tmp;
#endif
mov_accum += accum_tmp;
}
for(; ii < (int)MLO_LRN_KERNEL_SZ0; ++ii)
{
_FLOAT bot_val = bot_data[lcl_off + jj * MLO_LRN_LCL_DATA_WIDTH + ii];
_FLOAT accum_tmp = bot_val * bot_val;
mov_accum += accum_tmp;
}
accum[0][0] += mov_accum;
// running horizontal window
for(; ii < (int)(MLO_LRN_KERNEL_SZ0 + MLO_LRN_N_HORIZ_OUT_PIX - 1); ++ii)
{
_FLOAT bot_val = bot_data[lcl_off + jj * MLO_LRN_LCL_DATA_WIDTH + ii];
_FLOAT accum_tmp = bot_val * bot_val;
// running horizontal window
mov_accum += (accum_tmp
#if MLO_LRN_N_HORIZ_OUT_PIX > 1
- partial_sum_x[ii - MLO_LRN_KERNEL_SZ0]
#endif
);
accum[0][ii - MLO_LRN_KERNEL_SZ0 + 1] += mov_accum;
}
}
// accumulate all other rows besides 0
for(; jj < (int)(MLO_LRN_KERNEL_SZ1 + MLO_LRN_N_VERT_OUT_PIX - 1); ++jj)
{
// first running horizontal winodw as before
mov_accum = 0;
for(ii = 0; ii < (int)(MLO_LRN_N_HORIZ_OUT_PIX - 1); ++ii)
{
_FLOAT bot_val = bot_data[lcl_off + jj * MLO_LRN_LCL_DATA_WIDTH + ii];
_FLOAT accum_tmp = bot_val * bot_val;
#if MLO_LRN_N_HORIZ_OUT_PIX > 1
partial_sum_x[ii] = accum_tmp;
#endif
accum[jj - MLO_LRN_KERNEL_SZ1 + 1][0] += accum_tmp;
}
for(; ii < (int)MLO_LRN_KERNEL_SZ0; ++ii)
{
_FLOAT bot_val = bot_data[lcl_off + jj * MLO_LRN_LCL_DATA_WIDTH + ii];
_FLOAT accum_tmp = bot_val * bot_val;
accum[jj - MLO_LRN_KERNEL_SZ1 + 1][0] += accum_tmp;
}
// running horizontal window
int ii1 = ii;
for(; ii < (int)(MLO_LRN_KERNEL_SZ0 + MLO_LRN_N_HORIZ_OUT_PIX - 1); ++ii)
{
_FLOAT bot_val = bot_data[lcl_off + jj * MLO_LRN_LCL_DATA_WIDTH + ii];
_FLOAT accum_tmp = bot_val * bot_val;
//
accum[jj - MLO_LRN_KERNEL_SZ1 + 1][ii - MLO_LRN_KERNEL_SZ0 + 1] =
accum[jj - MLO_LRN_KERNEL_SZ1 + 1][ii - MLO_LRN_KERNEL_SZ0] + accum_tmp;
#if MLO_LRN_N_HORIZ_OUT_PIX > 1
accum[jj - MLO_LRN_KERNEL_SZ1 + 1][ii - MLO_LRN_KERNEL_SZ0 + 1] -=
partial_sum_x[ii - MLO_LRN_KERNEL_SZ0];
#endif
}
// finally running vertical window
for(ii = ii1; ii < (int)(MLO_LRN_KERNEL_SZ0 + MLO_LRN_N_HORIZ_OUT_PIX - 1); ++ii)
{
// finish horizontal summation
// add/substarct vertical patial sum
accum[jj - MLO_LRN_KERNEL_SZ1 + 1][ii - MLO_LRN_KERNEL_SZ0 + 1] +=
accum[jj - MLO_LRN_KERNEL_SZ1][ii - MLO_LRN_KERNEL_SZ0 + 1];
#if MLO_LRN_N_VERT_OUT_PIX > 1
accum[jj - MLO_LRN_KERNEL_SZ1 + 1][ii - MLO_LRN_KERNEL_SZ0 + 1] -=
partial_sum_xy[jj - MLO_LRN_KERNEL_SZ1][ii - MLO_LRN_KERNEL_SZ0 + 1];
#endif
}
#if MLO_LRN_N_VERT_OUT_PIX > 1
accum[jj - MLO_LRN_KERNEL_SZ1 + 1][0] -= partial_sum_xy[jj - MLO_LRN_KERNEL_SZ1][0];
#endif
accum[jj - MLO_LRN_KERNEL_SZ1 + 1][0] += accum[jj - MLO_LRN_KERNEL_SZ1][0];
}
// normalization
_FLOAT prv_scale[MLO_LRN_N_VERT_OUT_PIX][MLO_LRN_N_HORIZ_OUT_PIX];
_FLOAT adj_alphaoverarea = alphaoverarea;
for(int k = 0; k < MLO_LRN_N_VERT_OUT_PIX; k++)
{
// int hstart = y + lcl_id1 * MLO_LRN_N_VERT_OUT_PIX + k -
// MLO_LRN_PAD1;
// int hend = min(hstart + MLO_LRN_KERNEL_SZ, MLO_LRN_BOT_HEIGHT +
// MLO_LRN_PAD1);
for(int l = 0; l < MLO_LRN_N_HORIZ_OUT_PIX; l++)
{
// int wstart = x + lcl_id0 * MLO_LRN_N_HORIZ_OUT_PIX + l -
// MLO_LRN_PAD0;
// int wend = min(wstart + MLO_LRN_KERNEL_SZ, MLO_LRN_BOT_WIDTH
//+
// MLO_LRN_PAD0);
// int adj_area_size = (hend - hstart) * (wend - wstart);
// adj_alphaoverarea = alpha / adj_area_size;
prv_scale[k][l] = K + accum[k][l] * adj_alphaoverarea;
}
}
int top_off = b * MLO_LRN_TOP_BATCH_STRIDE + o * MLO_LRN_TOP_CHANNEL_STRIDE +
top_y * MLO_LRN_TOP_STRIDE + top_x;
#if MLO_LRN_DO_SCALE
int scale_off = b * MLO_LRN_SCALE_BATCH_STRIDE + o * MLO_LRN_SCALE_CHANNEL_STRIDE +
top_y * MLO_LRN_SCALE_STRIDE + top_x;
#endif
// final output
for(int k = 0; k < MLO_LRN_N_VERT_OUT_PIX
#if MLO_OUT_VERT_ALIGNED == 0
&& (top_y + k < MLO_LRN_TOP_HEIGHT)
#endif
;
k++)
{
for(int l = 0; l < MLO_LRN_N_HORIZ_OUT_PIX
#if MLO_OUT_HORIZ_ALIGNED == 0
&& (top_x + l < MLO_LRN_TOP_WIDTH)
#endif
;
l++)
{
_FLOAT s;
s = exp((_FLOAT)-beta * log(prv_scale[k][l]));
// s = pow(prv_scale[k][l], -beta);
_FLOAT bot_val = bot_data[lcl_off + mad24((k + MLO_LRN_PRE_PAD1),
(int)MLO_LRN_LCL_DATA_WIDTH,
(l + MLO_LRN_PRE_PAD0))];
#if MLO_LRN_DO_SCALE
scale[scale_off + k * MLO_LRN_SCALE_STRIDE + l] = prv_scale[k][l];
#endif
top[top_off + k * MLO_LRN_TOP_STRIDE + l] = bot_val * s;
}
}
}
#if(MLO_LRN_N_INPUTS < MLO_LRN_KERNEL_SZ)
#define MLO_LOW_CHNL_COUNT 1
#else
#define MLO_LOW_CHNL_COUNT 0
#endif
__attribute__((reqd_work_group_size(MLO_LRN_GROUP_SZ0, MLO_LRN_GROUP_SZ1, MLO_LRN_GROUP_SZ2)))
__kernel void
MIOpenLRNAcrossChannels4(const __global _FLOAT* bottom,
__global _FLOAT* top,
#if MLO_LRN_DO_SCALE
__global _FLOAT* scale,
#endif
_FLOAT alphaoverarea,
UNUSED _FLOAT alpha,
_FLOAT beta,
_FLOAT K)
{
int pix_id = get_global_id(0); //
int b = get_global_id(2); // batch
MLO_READ_TYPE accum = 0;
MLO_READ_TYPE bot_in2[MLO_LRN_KERNEL_SZ];
MLO_READ_TYPE bot_in[MLO_LRN_KERNEL_SZ];
int c_i = 0, c_o = 0;
for(int i = 0; i < MLO_LRN_KERNEL_SZ; ++i)
{
bot_in2[i] = 0;
bot_in[i] = 0;
}
int top_off = 0;
#if MLO_LRN_DO_SCALE
int scale_off;
#endif
for(c_i = 0; c_i < MLO_LRN_PAD; c_i++)
{
MLO_READ_TYPE prv_in;
prv_in = 0;
#if MLO_LOW_CHNL_COUNT == 1
if(c_i < MLO_LRN_N_INPUTS)
#endif
{
#if MLO_C1x1_PIXLEFT > 0
// if the last one
if(pix_id == MLO_MAP_SZ4 - 1)
{
for(int j = 0; j < MLO_C1x1_PIXLEFT; ++j)
{
((_FLOAT*)&prv_in)[j] =
bottom[MLO_LRN_BOT_BATCH_STRIDE * b + MLO_LRN_BOT_CHANNEL_STRIDE * c_i +
(pix_id * MLO_READ_UNIT) + j];
}
}
else
#endif
{
prv_in = *(__global MLO_READ_TYPE*)&bottom[MLO_LRN_BOT_BATCH_STRIDE * b +
MLO_LRN_BOT_CHANNEL_STRIDE * c_i +
(pix_id * MLO_READ_UNIT)];
}
}
bot_in2[c_i] = prv_in * prv_in;
bot_in[c_i] = prv_in;
accum = accum + bot_in2[c_i];
// fma(bot_in2[c_i + MLO_LRN_PAD], bot_in2[c_i + MLO_LRN_PAD],
// accum);
}
for(; c_i < MLO_LRN_KERNEL_SZ; c_i++, c_o++)
{
MLO_READ_TYPE prv_in;
prv_in = 0;
#if MLO_LOW_CHNL_COUNT == 1
if(c_i < MLO_LRN_N_INPUTS)
#endif
{
#if MLO_C1x1_PIXLEFT > 0
// if the last one
if(pix_id == MLO_MAP_SZ4 - 1)
{
for(int j = 0; j < MLO_C1x1_PIXLEFT; ++j)
{
((_FLOAT*)&prv_in)[j] =
bottom[MLO_LRN_BOT_BATCH_STRIDE * b + MLO_LRN_BOT_CHANNEL_STRIDE * c_i +
(pix_id * MLO_READ_UNIT) + j];
}
}
else
#endif
{
prv_in = *(__global MLO_READ_TYPE*)&bottom[MLO_LRN_BOT_BATCH_STRIDE * b +
MLO_LRN_BOT_CHANNEL_STRIDE * c_i +
(pix_id * MLO_READ_UNIT)];
}
}
bot_in2[c_i] = prv_in * prv_in;
bot_in[c_i] = prv_in;
accum = accum + bot_in2[c_i];
top_off = b * MLO_LRN_TOP_BATCH_STRIDE + c_o * MLO_LRN_TOP_CHANNEL_STRIDE +
(pix_id * MLO_READ_UNIT);
#if MLO_LRN_DO_SCALE
scale_off = b * MLO_LRN_SCALE_BATCH_STRIDE + c_o * MLO_LRN_SCALE_CHANNEL_STRIDE +
(pix_id * MLO_READ_UNIT);
#endif
MLO_READ_TYPE prv_scale = ((MLO_READ_TYPE)K + accum * (MLO_READ_TYPE)alphaoverarea);
// fma(accum,alphaoverarea, (_FLOAT)1.f);
MLO_READ_TYPE exp_scale = exp((MLO_READ_TYPE)-beta * log(prv_scale));
// pow(prv_scale,-beta);
// bug
// MLO_READ_TYPE prv_out = sqrt(bot_in2[c_o]);
MLO_READ_TYPE prv_out = bot_in[c_o];
MLO_READ_TYPE out_val = prv_out * exp_scale;
#if MLO_LOW_CHNL_COUNT == 1
if(c_o < MLO_LRN_N_OUTPUTS)
#endif
{
#if MLO_C1x1_PIXLEFT > 0
// if the last one
if(pix_id == MLO_MAP_SZ4 - 1)
{
for(int j = 0; j < MLO_C1x1_PIXLEFT; ++j)
{
top[top_off + j] = ((_FLOAT*)&out_val)[j];
#if DBG_OUT
printf("K:o0: %d %f %f %f %f %f\n",
top_off + j,
top[top_off + j],
((_FLOAT*)&prv_out)[j],
((_FLOAT*)&exp_scale)[j],
((_FLOAT*)&prv_scale)[j],
((_FLOAT*)&accum)[j]);
#endif
#if MLO_LRN_DO_SCALE
scale[scale_off + j] = ((_FLOAT*)&prv_scale)[j];
#endif
}
}
else
#endif
{
*((__global MLO_READ_TYPE*)&top[top_off]) = out_val;
#if MLO_LRN_DO_SCALE
*((__global MLO_READ_TYPE*)&scale[scale_off]) = prv_scale;
#endif
}
}
}
for(; c_i < MLO_LRN_N_INPUTS; c_i++, c_o++)
{
MLO_READ_TYPE prv_in;
prv_in = 0;
#if MLO_C1x1_PIXLEFT > 0
// if the last one
if(pix_id == MLO_MAP_SZ4 - 1)
{
for(int j = 0; j < MLO_C1x1_PIXLEFT; ++j)
{
((_FLOAT*)&prv_in)[j] =
bottom[MLO_LRN_BOT_BATCH_STRIDE * b + MLO_LRN_BOT_CHANNEL_STRIDE * c_i +
(pix_id * MLO_READ_UNIT) + j];
}
}
else
#endif
{
prv_in = *(__global MLO_READ_TYPE*)&bottom[MLO_LRN_BOT_BATCH_STRIDE * b +
MLO_LRN_BOT_CHANNEL_STRIDE * c_i +
(pix_id * MLO_READ_UNIT)];
}
MLO_READ_TYPE prv_bot_in2 = prv_in * prv_in;
accum = accum + prv_bot_in2;
accum = accum - bot_in2[0];
// fma(-bot_in2[0], bot_in2[0], accum);
for(int i = 0; i < MLO_LRN_KERNEL_SZ - 1; i++)
{
bot_in2[i] = bot_in2[i + 1];
bot_in[i] = bot_in[i + 1];
}
bot_in2[MLO_LRN_KERNEL_SZ - 1] = prv_bot_in2;
bot_in[MLO_LRN_KERNEL_SZ - 1] = prv_in;
top_off = b * MLO_LRN_TOP_BATCH_STRIDE + c_o * MLO_LRN_TOP_CHANNEL_STRIDE +
(pix_id * MLO_READ_UNIT);
#if MLO_LRN_DO_SCALE
scale_off = b * MLO_LRN_SCALE_BATCH_STRIDE + c_o * MLO_LRN_SCALE_CHANNEL_STRIDE +
(pix_id * MLO_READ_UNIT);
#endif
MLO_READ_TYPE prv_scale = ((MLO_READ_TYPE)K + accum * (MLO_READ_TYPE)alphaoverarea);
// fma(accum,alphaoverarea, (_FLOAT)1.f);
MLO_READ_TYPE exp_scale = exp((MLO_READ_TYPE)-beta * log(prv_scale));
// pow(prv_scale,-beta);
// bug
// MLO_READ_TYPE prv_out = sqrt(bot_in2[MLO_LRN_PRE_PAD]);
MLO_READ_TYPE prv_out = bot_in[MLO_LRN_PRE_PAD];
MLO_READ_TYPE out_val = prv_out * exp_scale;
#if MLO_LOW_CHNL_COUNT == 1
if(c_o < MLO_LRN_N_OUTPUTS)
#endif
{
#if MLO_C1x1_PIXLEFT > 0
// if the last one
if(pix_id == MLO_MAP_SZ4 - 1)
{
for(int j = 0; j < MLO_C1x1_PIXLEFT; ++j)
{
top[top_off + j] = ((_FLOAT*)&out_val)[j];
#if DBG_OUT
printf("K:o1: %d %f %f %f\n",
top_off + j,
top[top_off + j],
((_FLOAT*)&prv_out)[j],
((_FLOAT*)&exp_scale)[j]);
#endif
#if MLO_LRN_DO_SCALE
scale[scale_off + j] = ((_FLOAT*)&prv_scale)[j];
#endif
}
}
else
#endif
{
*((__global MLO_READ_TYPE*)&top[top_off]) = out_val;
#if MLO_LRN_DO_SCALE
*((__global MLO_READ_TYPE*)&scale[scale_off]) = prv_scale;
#endif
}
}
}
for(; c_i < MLO_LRN_N_INPUTS + MLO_LRN_PAD; c_i++, c_o++)
{
accum = accum - bot_in2[0];
// fma(-bot_in2[0], bot_in2[0], accum);
for(int i = 0; i < MLO_LRN_KERNEL_SZ - 1; i++)
{
bot_in2[i] = bot_in2[i + 1];
bot_in[i] = bot_in[i + 1];
}
top_off = b * MLO_LRN_TOP_BATCH_STRIDE + c_o * MLO_LRN_TOP_CHANNEL_STRIDE +
(pix_id * MLO_READ_UNIT);
#if MLO_LRN_DO_SCALE
scale_off = b * MLO_LRN_SCALE_BATCH_STRIDE + c_o * MLO_LRN_SCALE_CHANNEL_STRIDE +
(pix_id * MLO_READ_UNIT);
#endif
MLO_READ_TYPE prv_scale = ((MLO_READ_TYPE)K + accum * (MLO_READ_TYPE)alphaoverarea);
// fma(accum,alphaoverarea, (_FLOAT)1.f);
MLO_READ_TYPE exp_scale = exp((MLO_READ_TYPE)-beta * log(prv_scale));
// pow(prv_scale,-beta);
// bug
// MLO_READ_TYPE prv_out = sqrt(bot_in2[MLO_LRN_PRE_PAD]);
MLO_READ_TYPE prv_out = bot_in[MLO_LRN_PRE_PAD];
MLO_READ_TYPE out_val = prv_out * exp_scale;
#if MLO_LOW_CHNL_COUNT == 1
if(c_o < MLO_LRN_N_OUTPUTS)
#endif
{
#if MLO_C1x1_PIXLEFT > 0
// if the last one
if(pix_id == MLO_MAP_SZ4 - 1)
{
for(int j = 0; j < MLO_C1x1_PIXLEFT; ++j)
{
top[top_off + j] = ((_FLOAT*)&out_val)[j];
#if DBG_OUT
printf("K:o2: %d %f %f %f\n",
top_off + j,
top[top_off + j],
((_FLOAT*)&prv_out)[j],
((_FLOAT*)&exp_scale)[j]);
#endif
#if MLO_LRN_DO_SCALE
scale[scale_off + j] = ((_FLOAT*)&prv_scale)[j];
#endif
}
}
else
#endif
{
*((__global MLO_READ_TYPE*)&top[top_off]) = out_val;
#if MLO_LRN_DO_SCALE
*((__global MLO_READ_TYPE*)&scale[scale_off]) = prv_scale;
#endif
}
}
}
}