-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
147 lines (134 loc) · 6.82 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import argparse
import model as model
import torch
import torch.nn as nn
import functions
import time
import os
import copy
import random
import dataloader
from torch.utils.data import DataLoader
from torch.autograd import Variable
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--input_dir', help='input image dir')#, default='')
parser.add_argument('--test_dir', help='testing_data')#, default='')
parser.add_argument('--outputs_dir',help='output model dir')#, default='')
parser.add_argument('--batchSize', default=16)
parser.add_argument('--testBatchSize', default=1)
parser.add_argument('--epoch', default=300) # 1300)
parser.add_argument('--not_cuda', action='store_true', help='disables cuda', default=0)
parser.add_argument('--device',default=torch.device('cuda:1'))
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')
parser.add_argument('--lr',type=float,default=0.0001,help='G‘s learning rate')
parser.add_argument('--gamma',type=float,default=0.01,help='scheduler gamma')
parser.add_argument('--nfc',type=int,default=32)
parser.add_argument('--nfc64',type=int,default=64)
parser.add_argument('--weight_gradient',type=float,default=0.001)
parser.add_argument('--weight_L',type=float,default=0.001)
opt = parser.parse_args()
seed = random.randint(1, 10000)
torch.manual_seed(seed)
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.enabled = False
train_set = dataloader.get_training_set(opt.input_dir)
val_set = dataloader.get_val_set(opt.test_dir)
train_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize,
shuffle=True)
val_loader = DataLoader(dataset=val_set, num_workers=opt.threads, batch_size=opt.testBatchSize, shuffle=False)
# 网络初始化:
net = model.Net(opt).to(opt.device)
for module in net.modules():
if isinstance(module, nn.BatchNorm2d):
module.eval()
# 建立优化器
optimizer = torch.optim.Adam(net.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer=optimizer,milestones=[1600],gamma=opt.gamma)
loss = torch.nn.L1Loss()
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
net = net.to(opt.device)
loss = loss.to(opt.device)
best_weights = copy.deepcopy(net.state_dict())
best_epoch = 0
best_SAM=1.0
for i in range(opt.epoch):
# train
net.train()
epoch_losses = functions.AverageMeter()
batch_time = functions.AverageMeter()
end = time.time()
for batch_idx, (gtBatch, msBatch, panBatch) in enumerate(train_loader):
if torch.cuda.is_available():
msBatch, panBatch, gtBatch = msBatch.to(opt.device), panBatch.to(opt.device), gtBatch.to(opt.device)
msBatch = Variable(msBatch.to(torch.float32))
panBatch = Variable(panBatch.to(torch.float32))
gtBatch = Variable(gtBatch.to(torch.float32))
msBatch,panBatch,gtBatch=functions.getBatch(msBatch,panBatch,gtBatch,opt.batchSize)
N = len(train_loader)
net.zero_grad()
msBatch = torch.nn.functional.interpolate(msBatch, size=(gtBatch.shape[2], gtBatch.shape[3]),
mode='bilinear')
ms_, pan_, out = net(msBatch, panBatch)
outLoss = loss(out, gtBatch)
outLoss.backward(retain_graph=True)
msLoss = loss(ms_, msBatch)
panLoss = loss(pan_, panBatch)
######## gradient loss x+y ##########
pan_Batch_gradient_x, pan_Batch_gradient_y = functions.gradientLoss_P(panBatch,opt)
pan_image_gradient_x, pan_image_gradient_y = functions.gradientLoss_P(pan_,opt)
gradient_loss_x = opt.weight_gradient * loss(pan_Batch_gradient_x.requires_grad_(),
pan_image_gradient_x.requires_grad_())
gradient_loss_y = opt.weight_gradient * loss(pan_Batch_gradient_y.requires_grad_(),
pan_image_gradient_y.requires_grad_())
(panLoss + gradient_loss_y + gradient_loss_x).backward(retain_graph=True)
# ms波段相关性loss
numloss=0
rel_tol = 1e-09
for m in range(4 - 1):
for n in range(m + 1, 4):
outChannel = ms_[:, n, :, :]/(ms_[:, m, :, :]+rel_tol)
tureChannel = msBatch[:, n, :, :]/(msBatch[:, m, :, :]+rel_tol)
channel_loss=loss(outChannel,tureChannel)
numloss=numloss+channel_loss
numloss+=numloss
(numloss + msLoss).backward(retain_graph=True)
optimizer.step()
epoch_losses.update(msLoss.item(), msBatch.shape[0])
batch_time.update(time.time() - end)
end = time.time()
if (batch_idx + 1) % 100 == 0:
training_state = ' '.join(
['Epoch: {}', '[{} / {}]', 'msLoss: {:.6f}','panLoss: {:.6f}']
)
training_state = training_state.format(
i, batch_idx, N, msLoss, panLoss
)
print(training_state)
print('%d epoch: loss is %.6f, epoch time is %.4f' % (i, epoch_losses.avg, batch_time.avg))
torch.save(net.state_dict(), os.path.join(opt.outputs_dir, 'epoch_{}.pth'.format(i)))
net.eval()
epoch_SAM=functions.AverageMeter()
with torch.no_grad():
for j, (gtTest, msTest, panTest) in enumerate(val_loader):
if torch.cuda.is_available():
msTest, panTest, gtTest = msTest.to(opt.device), panTest.to(opt.device), gtTest.to(opt.device)
msTest = Variable(msTest.to(torch.float32))
panTest = Variable(panTest.to(torch.float32))
gtTest = Variable(gtTest.to(torch.float32))
net = net.to(opt.device)
msTest = torch.nn.functional.interpolate(msTest, size=(256, 256), mode='bilinear')
_,_,mp = net(msTest, panTest)
test_SAM=functions.SAM(mp, gtTest)
if test_SAM==test_SAM:
epoch_SAM.update(test_SAM,msTest.shape[0])
print('eval SAM: {:.6f}'.format(epoch_SAM.avg))
if epoch_SAM.avg < best_SAM:
best_epoch = i
best_SAM = epoch_SAM.avg
best_weights = copy.deepcopy(net.state_dict())
print('best epoch:{:.0f}'.format(best_epoch))
scheduler.step()
print('best epoch: {}, epoch_SAM: {:.6f}'.format(best_epoch, best_SAM))
torch.save(best_weights, os.path.join(opt.outputs_dir, 'best.pth'))