-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain.py
70 lines (60 loc) · 3.47 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import argparse
import os
import torch
import numpy as np
import random
import wandb
from utils.chsnet_trainer import CHSNetTrainer
def parse_args():
parser = argparse.ArgumentParser(description='Train ')
parser.add_argument('--tag', default='chsnet', help='tag of training')
parser.add_argument('--device', default='0', help='assign device')
parser.add_argument('--no-wandb', action='store_true', default=False, help='whether to use wandb')
parser.add_argument('--data-dir', default=r'../DATASET/QNRF-trainfull-test-dmapfix15', help='training data directory')
parser.add_argument('--log-param', type=float, default=100.0, help='dmap scale factor')
parser.add_argument('--is-gray', type=bool, default=False, help='whether the input image is gray')
parser.add_argument('--crop-size', type=int, default=512, help='the crop size of the train image')
parser.add_argument('--downsample-ratio', type=int, default=16, help='downsample ratio')
parser.add_argument('--dcsize', type=int, default=4, help='divide count size for density map')
parser.add_argument('--max-noisy-ratio', type=float, default=0.1, help='for chsloss')
parser.add_argument('--max-weight-ratio', type=float, default=1, help='for chsloss')
parser.add_argument('--lr', type=float, default=4*1e-5, help='the initial learning rate')
parser.add_argument('--batch-size', type=int, default=1, help='train batch size')
parser.add_argument('--num-workers', type=int, default=4, help='the num of training process')
parser.add_argument('--weight-decay', type=float, default=1e-5, help='the weight decay')
parser.add_argument('--max-epoch', type=int, default=1000, help='max training epoch')
parser.add_argument('--val-epoch', type=int, default=5, help='the num of steps to log training information')
parser.add_argument('--val-start', type=int, default=200, help='the epoch start to val')
parser.add_argument('--scheduler', type=str, default='step', help='or cosine')
parser.add_argument('--step', type=int, default=400)
parser.add_argument('--gamma', type=float, default=0.5)
parser.add_argument('--t-max', type=int, default=200, help='for consine scheduler')
parser.add_argument('--eta-min', type=float, default=4*1e-6, help='for consine scheduler')
parser.add_argument('--save-dir', default='./checkpoint', help='directory to save models.')
parser.add_argument('--save-all', type=bool, default=False, help='whether to save all best model')
parser.add_argument('--max-model-num', type=int, default=1, help='max models num to save ')
parser.add_argument('--resume', default='', help='the path of resume training model')
args = parser.parse_args()
return args
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
if seed == 0: # reproducible but slow
torch.backends.cudnn.benchmark = False # false by default, slow
torch.backends.cudnn.deterministic = True # Whether to use deterministic convolution algorithm? false by default.
else: # fast
torch.backends.cudnn.benchmark = True
if __name__ == '__main__':
setup_seed(43)
args = parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.device.strip() # set vis gpu
if args.no_wandb:
wandb.init(mode="disabled")
else:
wandb.init(project="CHSNet", name=args.tag, config=vars(args))
trainer = CHSNetTrainer(args)
trainer.setup()
trainer.train()
wandb.finish()