-
Notifications
You must be signed in to change notification settings - Fork 0
/
spellCheck.py
222 lines (195 loc) · 8.14 KB
/
spellCheck.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import math
from metaphone import doublemetaphone
from datetime import datetime
import subprocess as sp
from functools import cache
import re
import gzip
import sys
invertedIndex = {}
phoneticC = {}
countLength = {}
lastEdit = {}
docs = []
num = 0
#get the files for the dictionary
for f in sp.getoutput("cd fileDict && ls").split("\n"):
f.replace(" ","\ ")
docs.append(open("fileDict/"+f, "rb"))
firstRow = ["z","x","c","v","b","n","m"]
secRow = ["a","s","d","f","g","h","j","k","l"]
thirdRow = ["q","w","e","r","t","y","u","i","o","p"]
allLetters = "zxcvbnmasdfghjklqwertyuiop"
@cache
#farthest distance will be from q to m (6.67)
def distKey(a, b):
a = a.lower()
b = b.lower()
if a not in allLetters or b not in allLetters:
return 4;
cor1 = []
cor2 = []
if a in thirdRow:
cor1 = [thirdRow.index(a), 2]
elif a in secRow:
cor1 = [secRow.index(a)+.3, 1]
elif a in firstRow:
cor1 = [firstRow.index(a)+.6, 0]
if b in thirdRow:
cor2 = [thirdRow.index(b), 2]
elif b in secRow:
cor2 = [secRow.index(b)+.3, 1]
elif b in firstRow:
cor2 = [firstRow.index(b)+.6, 0]
return math.sqrt(abs(cor1[0]-cor2[0])**2 + abs(cor1[1]-cor2[1])**2)
@cache
##taken from https://www.educative.io/answers/the-levenshtein-distance-algorithm
def levenshteinDist(a, b, specific=False):
# Declaring array 'D' with rows = len(a) + 1 and columns = len(b) + 1:
D = [[0 for i in range(len(b) + 1)] for j in range(len(a) + 1)]
# Initialising first row:
for i in range(len(a) + 1):
D[i][0] = i
# Initialising first column:
for j in range(len(b) + 1):
D[0][j] = j
for i in range(1, len(a) + 1):
for j in range(1, len(b) + 1):
if a[i - 1] == b[j - 1]:
D[i][j] = D[i - 1][j - 1]
else:
# Adding 1 to account for the cost of operation
insertion = (1 if not specific else (distKey(b[j-1], "g") if i==1 else distKey(b[j-1], a[i-2]))) + D[i][j - 1] #cost from b[j-1] to a[i-2] and if i==1 then b[j-1] to g
deletion = (1 if not specific else (distKey(a[i-1], "g") if i==1 else distKey(a[i-1], a[i-2]))) + D[i - 1][j] #cost from a[i-1] and a[i-2] and if i==1 then a[i-1] to g
replacement = (1 if not specific else (distKey(a[i-1], b[j-1]))) + D[i - 1][j - 1] #cost from a[i-1] b[j-1]
# Choosing the best option:
D[i][j] = min(insertion, deletion, replacement)
return D[len(a)][len(b)]
@cache
#popularity of word
def popularity(word):
count = 0
for doc in invertedIndex[word]:
count += (len(invertedIndex[word][doc]) / lastEdit[doc])
if count == 1:
return 1
return math.log(count)
def sortSecond(val):
return val[1]
@cache
def wordStartSame(word): ## and length diff is at max 3 letters from word
arr = []
for words in invertedIndex:
if words == "" or words == " ":
continue
if words[0] == word[0] and abs(len(word)-len(words)) <= 2:
arr.append(words)
return arr
########### MAIN ##############
#creating dictionary
for doc in docs:
while True:
content=doc.readline()
if not content:
break
words = str(content).replace("\\n", "").replace("\\r", "").replace("\\",'').replace("\'b", "").replace("b'", ""). replace("b\"", "")
words = re.split(r'x[a-fA-F0-9][a-fA-F0-9]|,', words)
for word in words:
wordArr = word.split()
filename = docs.index(doc)
for single in wordArr:
single = single.strip()
single = single.rstrip("!\"#$%&'()*+,-./:;<=>?@[\]^_`{|}~'")
single = single.lstrip("!\"#$%&'()*+,-./:;<=>?@[\]^_`{|}~'")
if single == "" or single == " " or single.isnumeric() or len(single) == 1 or not re.search(r'[a-zA-Z]+', single):
continue
if single in invertedIndex:
if filename in invertedIndex[single]:
invertedIndex[single][filename].append(num)
else:
invertedIndex[single][filename] = [num]
else:
invertedIndex[single] = {filename: [num]};
num = num + 1
dateEdit = sp.getoutput("stat "+re.escape(doc.name).replace("\'", "\\'")).split("Modify: ")[1].split(".")[0]
datTimeFormat = datetime.strptime(dateEdit, '%Y-%m-%d %H:%M:%S')
lastEdit[docs.index(doc)] = (datetime.now() - datTimeFormat).total_seconds() / (60 * 60) # get difference in hours
lastEdit = {k: v for k, v in sorted(lastEdit.items(), key=lambda item: item[1])} #sort dates of last edit
for doc in docs:
doc.close()
#delta encoding of inverted Index
for word in invertedIndex.keys():
for doc in invertedIndex[word]:
for num in range(len(invertedIndex[word][doc])-1, 0, -1) :
invertedIndex[word][doc][num] = invertedIndex[word][doc][num] - invertedIndex[word][doc][num-1]
#creating phoentic code and dictionary of words of same length
for word in invertedIndex.keys():
pC = doublemetaphone(word)[0]
if pC in phoneticC:
phoneticC[pC].append(word)
else:
phoneticC[pC] = [word]
if len(word) in countLength:
countLength[len(word)].append(word)
else:
countLength[len(word)] = [word]
#take words from text
fileR = open(sys.argv[1], "r")
words = []
while True:
content=fileR.readline()
if not content:
break
words += (content.replace("\n", "").split(" "))
fileR.close()
@cache
def returnRank(arg):
if len(arg) == 1:
return
arg = arg.rstrip("!\"#$%&'()*+,-./:;<=>?@[\]^_`{|}~'")
arg = arg.lstrip("!\"#$%&'()*+,-./:;<=>?@[\]^_`{|}~'")
if arg == "" or arg == " " or arg.isnumeric():
return
pC = doublemetaphone(arg)[0] if doublemetaphone(arg)[0] in phoneticC else doublemetaphone(arg)[1]
wordSamepC = []
if pC in phoneticC and pC != "": #might not find words that are the same code
wordSamepC = phoneticC[pC]
wordSameLen = countLength[len(arg)]
iDist = []
for word in wordSamepC:
dist = .0001 if levenshteinDist(arg, word) == 0 else levenshteinDist(arg, word)
iDist.append([word, (1/dist)])
iDist.sort(key=sortSecond, reverse=True) #getting SMALLEST distance
for word in wordStartSame(arg):
dist = .0001 if levenshteinDist(arg, word) == 0 else levenshteinDist(arg, word)
if [word, (1/dist)] not in iDist:
iDist.append([word, (1/dist)])
iDist.sort(key=sortSecond, reverse=True)
for word in wordSameLen:
dist = .0001 if levenshteinDist(arg, word) == 0 else levenshteinDist(arg, word)
if [word, (1/dist)] not in iDist:
iDist.append([word, (1/dist)])
iDist.sort(key=sortSecond, reverse=True)
#filter the iDist array if two elements next to eachother are more than .01 aprt use distance thingy
"""
insertion = (distKey(b[j-1], "g") if i==1 else distKey(b[j-1], a[i-2])) + D[i][j - 1] #cost from b[j-1] to a[i-2] and if i==1 then b[j-1] to g
deletion = (distKey(a[i-1], "g") if i==1 else distKey(a[i-1], a[i-2])) + D[i - 1][j] #cost from a[i-1] and a[i-2] and if i==1 then a[i-1] to g
replacement = distKey(a[i-1], b[j-1]) + D[i - 1][j - 1] #cost from a[i-1] b[j-1]
"""
#filter the iDist array such that any two elemnts next to each other are more than .01 apart and if so then check the popularity of both
iDistN = [iDist[0]]
for index in range(1, len(iDist)):
i = len(iDistN) - 1
if abs(iDist[index][1] - iDistN[i][1]) <= 0.01:
if levenshteinDist(iDist[index][0], arg, True) < levenshteinDist(iDistN[i][0], arg, True) or popularity(iDist[index][0])*0.1 > popularity(iDistN[i][0]):
iDistN[i] = iDist[index]
else:
iDistN.append(iDist[index])
iDist = iDistN
if iDist[0][0] != arg:
print("Instead of \""+ arg+ "\" did you mean this?")
for d in iDist:
print(d[0])
#take in every argument
for arg in words:
returnRank(arg)