-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathrun.py
94 lines (78 loc) · 2.39 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#!/usr/bin/env python3
import argparse
import os
import random
from datetime import datetime
import numpy as np
import numba
import quaternion
import torch
import habitat
from habitat import logger
from habitat.config import Config
from habitat_baselines.common.baseline_registry import baseline_registry
from pirlnav.config import get_config
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--run-type",
choices=["train", "eval"],
required=True,
help="run type of the experiment (train or eval)",
)
parser.add_argument(
"--exp-config",
type=str,
required=True,
help="path to config yaml containing info about experiment",
)
parser.add_argument(
"opts",
default=None,
nargs=argparse.REMAINDER,
help="Modify config options from command line",
)
args = parser.parse_args()
run_exp(**vars(args))
def execute_exp(config: Config, run_type: str) -> None:
r"""This function runs the specified config with the specified runtype
Args:
config: Habitat.config
runtype: str {train or eval}
"""
# set a random seed (from detectron2)
seed = (
os.getpid()
+ int(datetime.now().strftime("%S%f"))
+ int.from_bytes(os.urandom(2), "big")
)
logger.info("Using a generated random seed {}".format(seed))
config.defrost()
config.RUN_TYPE = run_type
config.TASK_CONFIG.SEED = seed
config.freeze()
random.seed(config.TASK_CONFIG.SEED)
np.random.seed(config.TASK_CONFIG.SEED)
torch.manual_seed(config.TASK_CONFIG.SEED)
if config.FORCE_TORCH_SINGLE_THREADED and torch.cuda.is_available():
torch.set_num_threads(1)
trainer_init = baseline_registry.get_trainer(config.TRAINER_NAME)
assert trainer_init is not None, f"{config.TRAINER_NAME} is not supported"
trainer = trainer_init(config)
if run_type == "train":
trainer.train()
elif run_type == "eval":
trainer.eval()
def run_exp(exp_config: str, run_type: str, opts=None) -> None:
r"""Runs experiment given mode and config
Args:
exp_config: path to config file.
run_type: "train" or "eval.
opts: list of strings of additional config options.
Returns:
None.
"""
config = get_config(exp_config, opts)
execute_exp(config, run_type)
if __name__ == "__main__":
main()