-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathprocessing_utils.py
503 lines (414 loc) · 16.3 KB
/
processing_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import numpy as np
import warnings
from radis.spectrum.operations import add_array
from radis import Spectrum
from pydantic import ConfigDict, validate_arguments
# filters out specific warning messages
warnings.filterwarnings("ignore", message="invalid value encountered in power")
warnings.filterwarnings("ignore", message="overflow encountered in power")
# -------------------------------------
# ------------- blackbody -------------
# -------------------------------------
# @validate_arguments(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def __sPlanck(spectrum: np.ndarray, source_temp: int) -> np.ndarray:
"""
Calculates the y-values of a Blackbody spectrum.
Parameters:
spectrum: An array of x-value for a spectrum
source_temp: The source temperature associated with the spectrum
Returns:
The y-values of a Blackbody spectrum
"""
H = 6.62606957e-34
C = 2.99792458e8
K_B = 1.3806488e-23
return (0.2 * H * (C**2)) / ((1 / (spectrum * (10**2))) ** 5) * (1 / (np.exp((H * C) / ((1 / (spectrum * (10**2))) * K_B * source_temp)) - 1))
# --------------------------------------
# --------------- window ---------------
# --------------------------------------
# @validate_arguments(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def __CaF2(spectrum: np.ndarray) -> np.ndarray:
"""
Calculates the y-values for a CaF2 cell window.
Parameters:
spectrum: An array of x-value for a spectrum
Returns:
The y-values associated with a CaF2 cell window
"""
return (0.93091) / (1 + (11.12929 / (10000 / spectrum)) ** -12.43933) ** 4.32574
# @validate_arguments(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def __ZnSe(spectrum: np.ndarray) -> np.ndarray:
"""
Calculates the y-values for a ZnSe cell window.
Parameters:
spectrum: An array of x-value for a spectrum
Returns:
The y-values associated with a ZnSe cell window
"""
x_um = 10000 / spectrum
return (0.71015) / ((1 + (20.99353 / x_um) ** -19.31355) ** 1.44348) + -0.13265 / (
2.25051 * np.sqrt(np.pi / (4 * np.log(2)))
) * np.exp(-4 * np.log(2) * ((x_um - 16.75) ** 2) / (2.25051**2))
# @validate_arguments(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def __sapphire(spectrum: np.ndarray) -> np.ndarray:
"""
Calculates the y-values for a sapphire window.
Parameters:
spectrum: An array of x-value for a spectrum
Returns:
The y-values associated with a sapphire window
"""
return 0.78928 / (1 + (11.9544 / (10000 / spectrum)) ** -12.07226) ** 6903.57039
# @validate_arguments(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def __AR_ZnSe(spectrum: np.ndarray) -> np.ndarray:
"""
Calculates the y-values for a AR_ZnSe beamsplitter.
Parameters:
spectrum: An array of x-value for a spectrum
Returns:
The y-values associated with a AR_ZnSe beamsplitter
"""
x_um = 10000 / spectrum
return (
(0.82609) / ((1 + ((34.63971 / x_um) ** -8.56269)) ** 186.34792)
+ -0.47
/ (0.55 * np.sqrt(np.pi / (4 * np.log(2))))
* np.exp(-4 * np.log(2) * ((x_um - 1.47) ** 2) / (0.55**2))
+ -0.03456
/ (0.4 * np.sqrt(np.pi / (4 * np.log(2))))
* np.exp(-4 * np.log(2) * ((x_um - 2.88) ** 2) / (0.4**2))
+ -0.009
/ (0.3 * np.sqrt(np.pi / (4 * np.log(2))))
* np.exp(-4 * np.log(2) * ((x_um - 6.16) ** 2) / (0.3**2))
+ -0.09
/ (1 * np.sqrt(np.pi / (4 * np.log(2))))
* np.exp(-4 * np.log(2) * ((x_um - 16.2) ** 2) / (1**2))
+ -0.08
/ (1 * np.sqrt(np.pi / (4 * np.log(2))))
* np.exp(-4 * np.log(2) * ((x_um - 17.4) ** 2) / (1**2))
+ 1.12
/ (8 * np.sqrt(np.pi / (4 * np.log(2))))
* np.exp(-4 * np.log(2) * ((x_um - 9.5) ** 2) / (8**2))
+ 0.11546
/ (2 * np.sqrt(np.pi / (4 * np.log(2))))
* np.exp(-4 * np.log(2) * ((x_um - 4.9) ** 2) / (2**2))
+ 0.21751
/ (2 * np.sqrt(np.pi / (4 * np.log(2))))
* np.exp(-4 * np.log(2) * ((x_um - 2.6) ** 2) / (2**2))
+ -0.05
/ (0.07 * np.sqrt(np.pi / (4 * np.log(2))))
* np.exp(-4 * np.log(2) * ((x_um - 0.8) ** 2) / (0.07**2))
)
# @validate_arguments(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def __AR_CaF2(spectrum: np.ndarray) -> np.ndarray:
"""
Calculates the y-values for a AR_CaF2 beamsplitter.
Parameters:
spectrum: An array of x-value for a spectrum
Returns:
The y-values associated with a AR_CaF2 beamsplitter
"""
x_um = 10000 / spectrum
return (
(0.9795) / ((1 + ((18.77617 / x_um) ** -6.94246)) ** 91.98745)
+ -0.06
/ (0.08 * np.sqrt(np.pi / (4 * np.log(2))))
* np.exp(-4 * np.log(2) * ((x_um - 0.76) ** 2) / (0.08**2))
+ -0.06
/ (0.2 * np.sqrt(np.pi / (4 * np.log(2))))
* np.exp(-4 * np.log(2) * (x_um - 1.06) ** 2 / 0.20**2)
+ -0.6
/ (3.0 * np.sqrt(np.pi / (4 * np.log(2))))
* np.exp(-4 * np.log(2) * ((x_um - 4.85) ** 2) / (3.0**2))
+ -0.35
/ (1.0 * np.sqrt(np.pi / (4 * np.log(2))))
* np.exp(-4 * np.log(2) * ((x_um - 9.40) ** 2) / (1.00**2))
+ 0.05
/ (0.8 * np.sqrt(np.pi / (4 * np.log(2))))
* np.exp(-4 * np.log(2) * ((x_um - 2.60) ** 2) / (0.8**2))
+ 0.04
/ (0.5 * np.sqrt(np.pi / (4 * np.log(2))))
* np.exp(-4 * np.log(2) * ((x_um - 7.75) ** 2) / (0.50**2))
+ -0.01
/ (0.6 * np.sqrt(np.pi / (4 * np.log(2))))
* np.exp(-4 * np.log(2) * ((x_um - 6.55) ** 2) / (0.6**2))
+ 0.01
/ (0.5 * np.sqrt(np.pi / (4 * np.log(2))))
* np.exp(-4 * np.log(2) * ((x_um - 1.82) ** 2) / (0.5**2))
)
# --------------------------------------
# -------------- detector --------------
# --------------------------------------
# @validate_arguments(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def __InSb(spectrum: np.ndarray) -> np.ndarray:
"""
Calculates the y-values for an InSb detector.
Parameters:
spectrum: An array of x-value for a spectrum
Returns:
The y-values associated with an InSb detector
"""
x_um = 10000 / spectrum
return 1.85314E11 * (1 / (1 + np.exp(-(x_um - 5.39001) / 1.80975))) * (
1 - 1 / (1 + np.exp(-(x_um - 5.39001) / 0.116))
) + (3.3E10) / (1.77143 * np.sqrt(np.pi / (4 * np.log(2)))) * np.exp(
-4 * np.log(2) * ((x_um - 5) ** 2) / (1.77143**2)
)
# @validate_arguments(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def __MCT(spectrum: np.ndarray) -> np.ndarray:
"""
Calculates the y-values for a MCT detector.
Parameters:
spectrum: An array of x-value for a spectrum
Returns:
The y-values associated with a MCT detector
"""
x_um = 10000 / spectrum # swap spectrum and 10000
return (
(1.98748 * (10**9))
+ (2.10252 * (10**10))
* (1 / (1 + np.exp(-(x_um - 20.15819) / 5.73688)))
* (1 - 1 / (1 + np.exp(-(x_um - 20.15819) / 1.11659)))
+ (1.3 * (10**9))
/ (2 * np.sqrt(np.pi / (4 * np.log(2))))
* np.exp(-4 * np.log(2) * ((x_um - 18.6) ** 2) / (2**2))
)
# -------------------------------------
# ---------- helper functions ----------
# ------------------------------------
# @validate_arguments(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def zeroY(spectrum: np.ndarray) -> np.ndarray:
"""
Calculates the y-values (y = 1) for background samples.
Parameters:
spectrum: An array of x-value for a spectrum
Returns:
The y-values associated with a background sample
"""
return (spectrum * 0) + 1
# @validate_arguments(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def param_check(params: dict[str, object]) -> bool:
"""
Parses user provided parameters for validity.
Parameters:
params (dict): The parameters provided by the user
Returns:
True if params are good. Else, returns False
"""
# check if number of parameters is correct
if len(params) != 13:
print(" incorrect amount of params. total params: %s" % (len(params)))
return False
# check if parameter names are correct
valid_params = [
"beamsplitter",
"detector",
"medium",
"mole",
"molecule",
"pressure",
"resolution",
"scan",
"source",
"waveMax",
"waveMin",
"window",
"zeroFill",
]
for key, value in params.items():
if (key not in valid_params) or (params[key] is None):
print(f" error with key: {key}. Value is: {value}")
return False
return True
# @validate_arguments(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def calc_wstep(resolution: float, zero_fill: int) -> float:
"""
Calculates the appropriate wstep for a spectrum based on the given resolution and zero fill.
Parameters:
resolution (int): the given resolution
zero_fill (int): the given zero fill
Returns:
The calculated wstep
"""
match resolution:
case 1:
match zero_fill:
case 0:
wstep = 0.481927711
case 1:
wstep = 0.240963855
case 2:
wstep = 0.120481928
case 0.5:
match zero_fill:
case 0:
wstep = 0.240963855
case 1:
wstep = 0.120481928
case 2:
wstep = 0.060240964
case 0.25:
match zero_fill:
case 0:
wstep = 0.120481928
case 1:
wstep = 0.060240964
case 2:
wstep = 0.030120482
case 0.125:
match zero_fill:
case 0:
wstep = 0.060240964
case 1:
wstep = 0.030120482
case 2:
wstep = 0.015060241
case 0.0625:
match zero_fill:
case 0:
wstep = 0.030120482
case 1:
wstep = 0.015060241
case 2:
wstep = 0.00753012
case 0.03125:
match zero_fill:
case 0:
wstep = 0.01506
case 1:
wstep = 0.00753
case 2:
wstep = 0.003765
case 0.015625:
match zero_fill:
case 0:
wstep = 0.00753
case 1:
wstep = 0.003765
case 2:
wstep = 0.001883
return wstep
# @validate_arguments(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def multiscan(spectrum: Spectrum, num_scans: int) -> Spectrum:
'''
Adds noise to the provided spectrum in chunks to optimize memory usage.
Parameters:
spectrum (Spectrum): the spectrum to add noise to
num_scans (int): the number of scans being run on the sample
Returns:
the spectrum with appropriate noise added
'''
# add random noise to spectrum
# https://radis.readthedocs.io/en/latest/source/radis.spectrum.operations.html#radis.spectrum.operations.add_array
w = spectrum.get_wavenumber()
# the maximum scans done per iteration
scans_per_group = 10
# how many maximized iterations
groups = num_scans // scans_per_group
low = 0
high = 0.005
# Adds noise in chunks to save memory space
for _ in range(groups):
spectrum = add_array(
spectrum,
sum(np.random.normal(low, high, (scans_per_group, len(w)))) / num_scans,
var="transmittance_noslit",
)
# does the remaining scans when the number of scans does not evenly divide into 10 (scans_per_group)
# ex. 115 scans -> the first 110 are done above; the last 5 are done here
if scans_per_group * groups < num_scans:
# the number of scans done above == scans_per_group * groups
# diff == the number of scans remaining
diff = num_scans - (scans_per_group * groups)
spectrum = add_array(
spectrum,
sum(np.random.normal(low, high, (diff, len(w)))) / num_scans,
var="transmittance_noslit",
)
return spectrum
# @validate_arguments(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def get_component_spectra(w: np.ndarray, source_temp: int) -> tuple[Spectrum, Spectrum,
Spectrum, Spectrum,
Spectrum, Spectrum,
Spectrum, Spectrum]:
'''
Calculates the spectra for the components of the spectrometer.
Parameters:
w (np.ndarray): the x-values for all of the spectra
source_temp (int): the source temperature for the blackbody spectrum
Returns:
a tuple containing all of the component spectra
'''
# processing for blackbody spectrum (sPlanck)
spec_sPlanck = Spectrum(
{"wavenumber": w, "transmittance_noslit": __sPlanck(w, source_temp)},
wunit="cm-1",
units={"transmittance_noslit": ""},
name="sPlanck",
)
# Normalize the blackbody spectrum to 1
spec_sPlanck.normalize(normalize_how="max", inplace=True, force=True)
# processing for anti-reflective zinc selenide (AR_ZnSe) beamsplitter
spec_AR_ZnSe = Spectrum(
{"wavenumber": w, "transmittance_noslit": __AR_ZnSe(w) ** (3/5)},
wunit="cm-1",
units={"transmittance_noslit": ""},
name="AR_ZnSe",
)
# processing for anti-reflective calcium fluoride (AR_CaF2) beamsplitter
spec_AR_CaF2 = Spectrum(
{"wavenumber": w, "transmittance_noslit": __AR_CaF2(w) ** (3/5)},
wunit="cm-1",
units={"transmittance_noslit": ""},
name="AR_CaF2",
)
# processing for calcium fluoride (CaF2) cell window
spec_CaF2 = Spectrum(
{"wavenumber": w, "transmittance_noslit": __CaF2(w) ** (2/5)},
wunit="cm-1",
units={"transmittance_noslit": ""},
name="CaF2",
)
# processing for zinc selenide (ZnSe) cell window
spec_ZnSe = Spectrum(
{"wavenumber": w, "transmittance_noslit": __ZnSe(w) ** (2/5)},
wunit="cm-1",
units={"transmittance_noslit": ""},
name="ZnSe",
)
# processing for sapphire window before detector
spec_sapphire = Spectrum(
{"wavenumber": w, "transmittance_noslit": __sapphire(w) ** (1/5)},
wunit="cm-1",
units={"transmittance_noslit": ""},
name="sapphire",
)
# processing for Mercury-Cadmium-Telluride (MCT) detector
spec_MCT = Spectrum(
{"wavenumber": w, "transmittance_noslit": __MCT(w)},
wunit="cm-1",
units={"transmittance_noslit": ""},
name="MCT",
)
# Normalize the MCT spectrum to 1
spec_MCT.normalize(normalize_how="max", inplace=True, force=True)
# processing for indium antimonide (InSb) detector
spec_InSb = Spectrum(
{"wavenumber": w, "transmittance_noslit": __InSb(w)},
wunit="cm-1",
units={"transmittance_noslit": ""},
name="InSb",
)
# Normalize the InSb spectrum to 2
spec_InSb.normalize(normalize_how="max", inplace=True, force=True)
_, y_value = spec_InSb.get("transmittance_noslit")
y_value *= 2
spec_InSb = Spectrum(
{"wavenumber": w, "transmittance_noslit": y_value},
wunit="cm-1",
units={"transmittance_noslit": ""},
name="InSb",
)
# End InSb Normalization
return (spec_sPlanck, spec_AR_ZnSe, spec_AR_CaF2, spec_CaF2, spec_ZnSe,
spec_sapphire, spec_MCT, spec_InSb)