-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathInceptionV1.py
181 lines (132 loc) · 8.03 KB
/
InceptionV1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import keras
from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D
from keras.layers import Dense, Activation
from keras.layers import Flatten, Input, Dropout, concatenate
from keras.regularizers import l2
from keras import backend as K
from keras.models import Model
class Inceptionv1_builder():
def __init__(self, input_shape = (224,224,3), output_units = 1000, init_kernel = (7,7), init_strides = (2,2), init_filters = 64,
regularizer = l2(1e-4), initializer = "he_normal", init_maxpooling = True):
'''
:param input_shape: input shape of dataset
:param output_units: output result dimension
:param init_kernel: The kernel size for first convolution layer
:param init_strides: The strides for first convolution layer
:param init_filters: The filter number for first convolution layer
:param regularizer: regularizer for all the convolution layers in whole NN
:param initializer: weight/parameters initializer for all convolution & fc layers in whole NN
:param init_maxpooling: Do the maxpooling after first two convolution layers or not
'''
assert len(input_shape) == 3, "input shape should be dim 3 ( row, col, channel or channel row col )"
self.input_shape = input_shape
self.output_units = output_units
self.init_kernel = init_kernel
self.init_strides = init_strides
self.init_filters = init_filters
self.regularizer = regularizer
self.initializer = initializer
self.init_maxpooling = init_maxpooling
if K.image_dim_ordering() == "tf":
self.row_axis = 1
self.col_axis = 2
self.channel_axis = 3
else:
self.row_axis = 2
self.col_axis = 3
self.channel_axis = 1
def _cn_relu(self, filters = 64, kernel_size = (3,3), strides = (1,1), padding = "same"):
'''
convenient function to build convolution(with regularizer and initializer) -> relu activation layers
'''
def f(input_x):
x = Conv2D(filters = filters, kernel_size = kernel_size, strides = strides, padding = padding,activation="relu",
kernel_initializer = self.initializer , kernel_regularizer = self.regularizer)(input_x)
return x
return f
def _auxiliary(self, name = "auxiliary_1"):
'''
In author's explanation:
" The auxiliary classifier will encourage discrimination in lower stages in the classifier,
increase the gradient signal that gets propagated back, and provide additional regularization"
:return: An output layer of auxiliary classifier
'''
def f(input_x):
x = input_x
x = AveragePooling2D(pool_size=(5,5), strides = (3,3), padding = "same")(x)
x = self._cn_relu(filters = 128, kernel_size = (1,1), padding = "same")(x)
x = Flatten()(x)
x = Dense(units = 1024, activation = "relu", kernel_regularizer= self.regularizer)(x)
x = Dropout(0.7)(x)
return Dense(units = self.output_units, activation = "softmax", kernel_initializer=self.initializer, name = name)(x)
return f
def _inception_block(self, _1x1 = 64, _3x3r = 96, _3x3 = 128, _5x5r = 16, _5x5 = 32, _maxpool = 32, name = "inception3a"):
'''
A function for building inception block, including 1x1 convolution layer, 3x3 convolution layer with dimension reducing,
5x5 convolution layer with dimension reducing and maxpooling layer with dimension reducing
:param _1x1: filter number of 1x1 convolution layer
:param _3x3r: filter number of dimension reducing layer for 3x3 convolution layer
:param _3x3: filter number of 3x3 convolution layer
:param _5x5r: filter number of dimension reducing layer for 5x5 convolution layer
:param _5x5: filter number of 5x5 convolution layer
:param _maxpool: filter number of dimension reducing layer for maxpooling layer
:return: A concatenate block of several scale convolution which is inception block
'''
def f(input_x):
branch1x1 = self._cn_relu(filters=_1x1, kernel_size=(1, 1), strides=(1, 1), padding="same")(input_x)
branch3x3 = self._cn_relu(filters=_3x3r, kernel_size=(1, 1), strides=(1, 1), padding="same")(input_x)
branch3x3 = self._cn_relu(filters=_3x3, kernel_size=(3, 3), strides=(1, 1), padding="same")(branch3x3)
branch5x5 = self._cn_relu(filters=_5x5r, kernel_size=(1, 1), strides=(1, 1), padding="same")(input_x)
branch5x5 = self._cn_relu(filters=_5x5, kernel_size=(5, 5), strides=(1, 1), padding="same",)(branch5x5)
brancemaxpool = MaxPooling2D(pool_size = (3,3), strides = (1,1), padding = "same")(input_x)
brancemaxpool = self._cn_relu(filters=_maxpool, kernel_size=(1, 1), strides=(1, 1), padding="same")(brancemaxpool)
return concatenate([branch1x1,branch3x3,branch5x5,brancemaxpool], axis = self.channel_axis, name = name)
return f
def build_inception(self):
'''
Main function for building inceptionV1 nn
:return: An inceptionV1 nn
'''
#Few traditional convolutional layers at lower layers
input_x = Input(self.input_shape)
x = self._cn_relu(filters = self.init_filters, kernel_size = self.init_kernel, strides = self.init_strides, padding = "same")(input_x)
if self.init_maxpooling:
x = MaxPooling2D(pool_size = (3,3), strides = (2,2), padding = "same")(x)
x = self._cn_relu(filters = 192, kernel_size = (3,3), strides = (1, 1), padding = "same")(x)
if self.init_maxpooling:
x = MaxPooling2D(pool_size = (3,3), strides = (2,2), padding = "same")(x)
#inception(3a)
x = self._inception_block(_1x1=64, _3x3r=96, _3x3=128, _5x5r=16, _5x5=32, _maxpool=32, name = "inception3a")(x)
#inception(3b)
x = self._inception_block(_1x1=128, _3x3r=128, _3x3=192, _5x5r=32, _5x5=96, _maxpool=64, name = "inception3b")(x)
x = MaxPooling2D(pool_size=(3,3), strides = (2,2), padding = "same")(x)
#inception(4a)
x = self._inception_block(_1x1=192, _3x3r=96, _3x3=208, _5x5r=16, _5x5=48, _maxpool=64, name = "inception4a")(x)
#auxiliary classifier 1
auxiliary1 = self._auxiliary(name = "auxiliary_1")(x)
# inception(4b)
x = self._inception_block(_1x1=160, _3x3r=112, _3x3=224, _5x5r=24, _5x5=64, _maxpool=64, name = "inception4b")(x)
# inception(4c)
x = self._inception_block(_1x1=128, _3x3r=128, _3x3=256, _5x5r=24, _5x5=64, _maxpool=64, name = "inception4c")(x)
# inception(4d)
x = self._inception_block(_1x1=112, _3x3r=144, _3x3=288, _5x5r=32, _5x5=64, _maxpool=64, name = "inception4d")(x)
#auxiliary classifier 2
auxiliary2 = self._auxiliary(name = "auxiliary_2")(x)
# inception(4e)
x = self._inception_block(_1x1=256, _3x3r=160, _3x3=320, _5x5r=32, _5x5=128, _maxpool=128, name = "inception4e")(x)
x = MaxPooling2D(pool_size=(3,3), strides=(2,2), padding = "same")(x)
#inception(5a)
x = self._inception_block(_1x1=256, _3x3r=160, _3x3=320, _5x5r=32, _5x5=128, _maxpool=128, name = "inception5a")(x)
#inception(5b)
x = self._inception_block(_1x1=384, _3x3r=192, _3x3=384, _5x5r=48, _5x5=128, _maxpool=128, name = "inception5b")(x)
x_shape = K.int_shape(x)
x = AveragePooling2D(pool_size = (x_shape[self.row_axis], x_shape[self.col_axis]), strides=(1,1))(x)
x = Flatten()(x)
x = Dropout(0.4)(x)
x = Dense(units = 1000, kernel_initializer = self.initializer, activation="relu")(x)
output_x = Dense(units = self.output_units, activation = "softmax", kernel_initializer=self.initializer, name = "main_output")(x)
inceptionv1_model = Model(inputs = [input_x], outputs = [auxiliary1, auxiliary2, output_x])
return inceptionv1_model
inception_builder = Inceptionv1_builder()
model = inception_builder.build_inception()
model.summary()