Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Please Help me about this #104

Open
ilhamprayudha opened this issue Jul 18, 2018 · 13 comments
Open

Please Help me about this #104

ilhamprayudha opened this issue Jul 18, 2018 · 13 comments

Comments

@ilhamprayudha
Copy link

ilhamprayudha commented Jul 18, 2018

1.is there any limit on data when preprocessing ?
I use the dataset with 15438 when in preprocessing it only produces 12988

  1. what can be changed on h.params to solve OOM on wavenet training
@ilhamprayudha ilhamprayudha changed the title datatraining reduce datatraining reduce & OOM wavenet Jul 18, 2018
@cobr123
Copy link

cobr123 commented Jul 18, 2018

  1. in h.params
    clip_mels_length = True, #For cases of OOM (Not really recommended, working on a workaround)
    max_mel_frames = 900, #Only relevant when clip_mels_length = True

@ilhamprayudha
Copy link
Author

why train_step is in default, whether the result of loss is good if train step above default or under default ?

I've tried using ljspeech dataset, why only 1 sentence is generated in wavenet?

how to use the model?

@ilhamprayudha ilhamprayudha changed the title datatraining reduce & OOM wavenet Please Help me about this Jul 18, 2018
@Rayhane-mamah
Copy link
Owner

Hello @ilhamprayudha, please refer to the README for information on how to use the model (both during training and synthesis).

like @cobr123 said, "max_mel_frames" is responsible for limiting data by length so you don't get OOM errors during training. Test out different max_mel_frames values for what suits you best. You can also change "outputs_per_step" to omit OOM errors by making it bigger (I don't recommend going bigger than 3). It is also recommended to keep batch_size=32.

Can you give clear explanation about:
"why only 1 sentence is generated in wavenet?" thanks.

@ilhamprayudha
Copy link
Author

ilhamprayudha commented Aug 7, 2018

  1. How about "We also present timings for
    sample generation, demonstrating more than 1000× speed-up relative to original WaveNet." In paper paralel wavenet.

I generate take along time

  1. In paper paralel wavenet is using raw fotmat not mulaw format, so what format is in this code?

@Rayhane-mamah
Copy link
Owner

@ilhamprayudha I provided an answer here.

This repo speed: 1 second of audio is generated in 62 seconds.

@ilhamprayudha
Copy link
Author

ilhamprayudha commented Aug 7, 2018

@Rayhane-mamah

  1. how about best format in your code is raw or mu-law, and What is the difference to tacotron-2

in your new repo is add preprocessing_wavenet why ? is the gta used better than synthesized tacotron-2

i try your new repo and in preprocess is
/usr/lib/python3.5/importlib/_bootstrap.py:222: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88
return f(*args, **kwds)

@Rayhane-mamah
Copy link
Owner

Raw wavenet gives an overall better audio quality than the mulaw-quanitize but it is slower to converge.

wavenet_preprocess was added as a way to use Wavenet in a standalone fashion in case one is not interested in the Tacotron part.

Please make sure you have the same numpy version as in the requirements file.

@ilhamprayudha
Copy link
Author

ilhamprayudha commented Aug 10, 2018

my numpy is same, even though such proceedings continue

this is also what happens when executing

`Traceback (most recent call last):
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1322, in _do_call
return fn(*args)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1307, in _run_fn
options, feed_dict, fetch_list, target_list, run_metadata)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1409, in _call_tf_sessionrun
run_metadata)
tensorflow.python.framework.errors_impl.CancelledError: Enqueue operation was cancelled
[[Node: datafeeder/input_queue_enqueue = QueueEnqueueV2[Tcomponents=[DT_INT32, DT_INT32, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](datafeeder/input_queue, _arg_datafeeder/inputs_0_1, _arg_datafeeder/input_lengths_0_0, _arg_datafeeder/mel_targets_0_3, _arg_datafeeder/token_targets_0_5, _arg_datafeeder/linear_targets_0_2, _arg_datafeeder/targets_lengths_0_4)]]

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "/usr/lib/python3.5/threading.py", line 914, in _bootstrap_inner
self.run()
File "/usr/lib/python3.5/threading.py", line 862, in run
self._target(*self._args, **self._kwargs)
File "/home/nlplab/PKL/Tacotron-2/tacotron/feeder.py", line 166, in _enqueue_next_train_group
self._session.run(self._enqueue_op, feed_dict=feed_dict)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 900, in run
run_metadata_ptr)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1135, in _run
feed_dict_tensor, options, run_metadata)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1316, in _do_run
run_metadata)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1335, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.CancelledError: Enqueue operation was cancelled
[[Node: datafeeder/input_queue_enqueue = QueueEnqueueV2[Tcomponents=[DT_INT32, DT_INT32, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](datafeeder/input_queue, _arg_datafeeder/inputs_0_1, _arg_datafeeder/input_lengths_0_0, _arg_datafeeder/mel_targets_0_3, _arg_datafeeder/token_targets_0_5, _arg_datafeeder/linear_targets_0_2, _arg_datafeeder/targets_lengths_0_4)]]

Caused by op 'datafeeder/input_queue_enqueue', defined at:
File "train.py", line 127, in
main()
File "train.py", line 121, in main
train(args, log_dir, hparams)
File "train.py", line 51, in train
checkpoint = tacotron_train(args, log_dir, hparams)
File "/home/nlplab/PKL/Tacotron-2/tacotron/train.py", line 305, in tacotron_train
return train(log_dir, args, hparams)
File "/home/nlplab/PKL/Tacotron-2/tacotron/train.py", line 123, in train
feeder = Feeder(coord, input_path, hparams)
File "/home/nlplab/PKL/Tacotron-2/tacotron/feeder.py", line 85, in init
self._enqueue_op = queue.enqueue(self._placeholders)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/data_flow_ops.py", line 346, in enqueue
self._queue_ref, vals, name=scope)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/gen_data_flow_ops.py", line 3977, in queue_enqueue_v2
timeout_ms=timeout_ms, name=name)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 3414, in create_op
op_def=op_def)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 1740, in init
self._traceback = self._graph._extract_stack() # pylint: disable=protected-access

CancelledError (see above for traceback): Enqueue operation was cancelled
[[Node: datafeeder/input_queue_enqueue = QueueEnqueueV2[Tcomponents=[DT_INT32, DT_INT32, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](datafeeder/input_queue, _arg_datafeeder/inputs_0_1, _arg_datafeeder/input_lengths_0_0, _arg_datafeeder/mel_targets_0_3, _arg_datafeeder/token_targets_0_5, _arg_datafeeder/linear_targets_0_2, _arg_datafeeder/targets_lengths_0_4)]]

Exception in thread background:
Traceback (most recent call last):
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1322, in _do_call
return fn(*args)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1307, in _run_fn
options, feed_dict, fetch_list, target_list, run_metadata)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1409, in _call_tf_sessionrun
run_metadata)
tensorflow.python.framework.errors_impl.CancelledError: Enqueue operation was cancelled
[[Node: datafeeder/eval_queue_enqueue = QueueEnqueueV2[Tcomponents=[DT_INT32, DT_INT32, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](datafeeder/eval_queue, _arg_datafeeder/inputs_0_1, _arg_datafeeder/input_lengths_0_0, _arg_datafeeder/mel_targets_0_3, _arg_datafeeder/token_targets_0_5, _arg_datafeeder/linear_targets_0_2, _arg_datafeeder/targets_lengths_0_4)]]

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "/usr/lib/python3.5/threading.py", line 914, in _bootstrap_inner
self.run()
File "/usr/lib/python3.5/threading.py", line 862, in run
self._target(*self._args, **self._kwargs)
File "/home/nlplab/PKL/Tacotron-2/tacotron/feeder.py", line 174, in _enqueue_next_test_group
self._session.run(self._eval_enqueue_op, feed_dict=feed_dict)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 900, in run
run_metadata_ptr)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1135, in _run
feed_dict_tensor, options, run_metadata)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1316, in _do_run
run_metadata)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1335, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.CancelledError: Enqueue operation was cancelled
[[Node: datafeeder/eval_queue_enqueue = QueueEnqueueV2[Tcomponents=[DT_INT32, DT_INT32, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](datafeeder/eval_queue, _arg_datafeeder/inputs_0_1, _arg_datafeeder/input_lengths_0_0, _arg_datafeeder/mel_targets_0_3, _arg_datafeeder/token_targets_0_5, _arg_datafeeder/linear_targets_0_2, _arg_datafeeder/targets_lengths_0_4)]]

Caused by op 'datafeeder/eval_queue_enqueue', defined at:
File "train.py", line 127, in
main()
File "train.py", line 121, in main
train(args, log_dir, hparams)
File "train.py", line 51, in train
checkpoint = tacotron_train(args, log_dir, hparams)
File "/home/nlplab/PKL/Tacotron-2/tacotron/train.py", line 305, in tacotron_train
return train(log_dir, args, hparams)
File "/home/nlplab/PKL/Tacotron-2/tacotron/train.py", line 123, in train
feeder = Feeder(coord, input_path, hparams)
File "/home/nlplab/PKL/Tacotron-2/tacotron/feeder.py", line 97, in init
self._eval_enqueue_op = eval_queue.enqueue(self._placeholders)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/data_flow_ops.py", line 346, in enqueue
self._queue_ref, vals, name=scope)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/gen_data_flow_ops.py", line 3977, in queue_enqueue_v2
timeout_ms=timeout_ms, name=name)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 3414, in create_op
op_def=op_def)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 1740, in init
self._traceback = self._graph._extract_stack() # pylint: disable=protected-access

CancelledError (see above for traceback): Enqueue operation was cancelled
[[Node: datafeeder/eval_queue_enqueue = QueueEnqueueV2[Tcomponents=[DT_INT32, DT_INT32, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](datafeeder/eval_queue, _arg_datafeeder/inputs_0_1, _arg_datafeeder/input_lengths_0_0, _arg_datafeeder/mel_targets_0_3, _arg_datafeeder/token_targets_0_5, _arg_datafeeder/linear_targets_0_2, _arg_datafeeder/targets_lengths_0_4)]]

`
why did that happen

@Rayhane-mamah
Copy link
Owner

@ilhamprayudha, according to this issue, it appears that your numpy warning can be ignored safely, as for the enqueue canceling, it happens when a bug occurs during training and the feeder drops all queues. The log you provided doesn't hold the main reason of the crash though so I can't really say what's going on with your run. (useful crash log is usually the first lines of the crash log).

Try maybe running the training and redirecting all "stdout" to a log file so that we can get the entire crash log then send it to me. thanks :)

@shartoo
Copy link

shartoo commented Aug 27, 2018

I got exactly the same error as @ilhamprayudha described above using model Tacotron-2 with my own dataset,how to fix the probem?Here is detail log

[2018-08-27 03:22:24.026]  Exiting due to exception: assertion failed: [] [Condition x == y did not hold element-wise:] [x (model_1/inference/strided_slice_5:0) = ] [14100] [y (model_1/inference/strided_slice_6:0) = ] [12925]
	 [[Node: model_1/inference/assert_equal/Assert/Assert = Assert[T=[DT_STRING, DT_STRING, DT_STRING, DT_INT32, DT_STRING, DT_INT32], summarize=3, _device="/job:localhost/replica:0/task:0/device:CPU:0"](model_1/inference/assert_equal/Equal/_27, model_1/loss/assert_equal_2/Assert/Assert/data_0, model_1/loss/assert_equal_2/Assert/Assert/data_1, model_1/inference/assert_equal/Assert/Assert/data_2, model_1/inference/strided_slice_5/_29, model_1/inference/assert_equal/Assert/Assert/data_4, model_1/inference/strided_slice_1/_31)]]

Caused by op 'model_1/inference/assert_equal/Assert/Assert', defined at:
  File "I:/newwork/Tacotron-2-mandarin-new/train.py", line 133, in <module>
    main()
  File "I:/newwork/Tacotron-2-mandarin-new/train.py", line 127, in main
    train(args, log_dir, hparams)
  File "I:/newwork/Tacotron-2-mandarin-new/train.py", line 79, in train
    checkpoint = wavenet_train(args, log_dir, hparams, input_path)
  File "I:\newwork\Tacotron-2-mandarin-new\wavenet_vocoder\train.py", line 252, in wavenet_train
    return train(log_dir, args, hparams, input_path)
  File "I:\newwork\Tacotron-2-mandarin-new\wavenet_vocoder\train.py", line 176, in train
    model, stats = model_train_mode(args, feeder, hparams, global_step)
  File "I:\newwork\Tacotron-2-mandarin-new\wavenet_vocoder\train.py", line 124, in model_train_mode
    feeder.input_lengths, x=feeder.inputs)
  File "I:\newwork\Tacotron-2-mandarin-new\wavenet_vocoder\models\wavenet.py", line 176, in initialize
    y_hat = self.step(x, c, g, softmax=False) #softmax is automatically computed inside softmax_cross_entropy if needed
  File "I:\newwork\Tacotron-2-mandarin-new\wavenet_vocoder\models\wavenet.py", line 474, in step
    with tf.control_dependencies([tf.assert_equal(tf.shape(c)[-1], tf.shape(x)[-1])]):
  File "C:\Python36\lib\site-packages\tensorflow\python\ops\check_ops.py", line 405, in assert_equal
    return control_flow_ops.Assert(condition, data, summarize=summarize)
  File "C:\Python36\lib\site-packages\tensorflow\python\util\tf_should_use.py", line 118, in wrapped
    return _add_should_use_warning(fn(*args, **kwargs))
  File "C:\Python36\lib\site-packages\tensorflow\python\ops\control_flow_ops.py", line 172, in Assert
    return gen_logging_ops._assert(condition, data, summarize, name="Assert")
  File "C:\Python36\lib\site-packages\tensorflow\python\ops\gen_logging_ops.py", line 51, in _assert
    name=name)
  File "C:\Python36\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper
    op_def=op_def)
  File "C:\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 3392, in create_op
    op_def=op_def)
  File "C:\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 1718, in __init__
    self._traceback = self._graph._extract_stack()  # pylint: disable=protected-access

InvalidArgumentError (see above for traceback): assertion failed: [] [Condition x == y did not hold element-wise:] [x (model_1/inference/strided_slice_5:0) = ] [14100] [y (model_1/inference/strided_slice_6:0) = ] [12925]
	 [[Node: model_1/inference/assert_equal/Assert/Assert = Assert[T=[DT_STRING, DT_STRING, DT_STRING, DT_INT32, DT_STRING, DT_INT32], summarize=3, _device="/job:localhost/replica:0/task:0/device:CPU:0"](model_1/inference/assert_equal/Equal/_27, model_1/loss/assert_equal_2/Assert/Assert/data_0, model_1/loss/assert_equal_2/Assert/Assert/data_1, model_1/inference/assert_equal/Assert/Assert/data_2, model_1/inference/strided_slice_5/_29, model_1/inference/assert_equal/Assert/Assert/data_4, model_1/inference/strided_slice_1/_31)]]


@shartoo
Copy link

shartoo commented Aug 27, 2018

My log in console is

Traceback (most recent call last):
  File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1322, in _do_call
    return fn(*args)
  File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1307, in _run_fn
    options, feed_dict, fetch_list, target_list, run_metadata)
  File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1409, in _call_tf_sessionrun
    run_metadata)
tensorflow.python.framework.errors_impl.CancelledError: Enqueue operation was cancelled
	 [[Node: datafeeder/eval_queue_enqueue = QueueEnqueueV2[Tcomponents=[DT_INT32, DT_INT32, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](datafeeder/eval_queue, _arg_datafeeder/inputs_0_1, _arg_datafeeder/input_lengths_0_0, _arg_datafeeder/mel_targets_0_3, _arg_datafeeder/token_targets_0_5, _arg_datafeeder/linear_targets_0_2, _arg_datafeeder/targets_lengths_0_4)]]

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "C:\Python36\lib\threading.py", line 916, in _bootstrap_inner
    self.run()
  File "C:\Python36\lib\threading.py", line 864, in run
    self._target(*self._args, **self._kwargs)
  File "I:\newwork\Tacotron-2-mandarin-new\tacotron\feeder.py", line 175, in _enqueue_next_test_group
    self._session.run(self._eval_enqueue_op, feed_dict=feed_dict)
  File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 900, in run
    run_metadata_ptr)
  File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1135, in _run
    feed_dict_tensor, options, run_metadata)
  File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1316, in _do_run
    run_metadata)
  File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1335, in _do_call
    raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.CancelledError: Enqueue operation was cancelled
	 [[Node: datafeeder/eval_queue_enqueue = QueueEnqueueV2[Tcomponents=[DT_INT32, DT_INT32, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](datafeeder/eval_queue, _arg_datafeeder/inputs_0_1, _arg_datafeeder/input_lengths_0_0, _arg_datafeeder/mel_targets_0_3, _arg_datafeeder/token_targets_0_5, _arg_datafeeder/linear_targets_0_2, _arg_datafeeder/targets_lengths_0_4)]]

Caused by op 'datafeeder/eval_queue_enqueue', defined at:
  File "I:/newwork/Tacotron-2-mandarin-new/train.py", line 133, in <module>
    main()
  File "I:/newwork/Tacotron-2-mandarin-new/train.py", line 127, in main
    train(args, log_dir, hparams)
  File "I:/newwork/Tacotron-2-mandarin-new/train.py", line 51, in train
    checkpoint = tacotron_train(args, log_dir, hparams)
  File "I:\newwork\Tacotron-2-mandarin-new\tacotron\train.py", line 310, in tacotron_train
    return train(log_dir, args, hparams)
  File "I:\newwork\Tacotron-2-mandarin-new\tacotron\train.py", line 128, in train
    feeder = Feeder(coord, input_path, hparams)
  File "I:\newwork\Tacotron-2-mandarin-new\tacotron\feeder.py", line 98, in __init__
    self._eval_enqueue_op = eval_queue.enqueue(self._placeholders)
  File "C:\Python36\lib\site-packages\tensorflow\python\ops\data_flow_ops.py", line 346, in enqueue
    self._queue_ref, vals, name=scope)
  File "C:\Python36\lib\site-packages\tensorflow\python\ops\gen_data_flow_ops.py", line 4373, in queue_enqueue_v2
    timeout_ms=timeout_ms, name=name)
  File "C:\Python36\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper
    op_def=op_def)
  File "C:\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 3392, in create_op
    op_def=op_def)
  File "C:\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 1718, in __init__
    self._traceback = self._graph._extract_stack()  # pylint: disable=protected-access

CancelledError (see above for traceback): Enqueue operation was cancelled
	 [[Node: datafeeder/eval_queue_enqueue = QueueEnqueueV2[Tcomponents=[DT_INT32, DT_INT32, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](datafeeder/eval_queue, _arg_datafeeder/inputs_0_1, _arg_datafeeder/input_lengths_0_0, _arg_datafeeder/mel_targets_0_3, _arg_datafeeder/token_targets_0_5, _arg_datafeeder/linear_targets_0_2, _arg_datafeeder/targets_lengths_0_4)]]


Exception in thread background:
Traceback (most recent call last):
  File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1322, in _do_call
    return fn(*args)
  File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1307, in _run_fn
    options, feed_dict, fetch_list, target_list, run_metadata)
  File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1409, in _call_tf_sessionrun
    run_metadata)
tensorflow.python.framework.errors_impl.CancelledError: Enqueue operation was cancelled
	 [[Node: datafeeder/input_queue_enqueue = QueueEnqueueV2[Tcomponents=[DT_INT32, DT_INT32, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](datafeeder/input_queue, _arg_datafeeder/inputs_0_1, _arg_datafeeder/input_lengths_0_0, _arg_datafeeder/mel_targets_0_3, _arg_datafeeder/token_targets_0_5, _arg_datafeeder/linear_targets_0_2, _arg_datafeeder/targets_lengths_0_4)]]

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "C:\Python36\lib\threading.py", line 916, in _bootstrap_inner
    self.run()
  File "C:\Python36\lib\threading.py", line 864, in run
    self._target(*self._args, **self._kwargs)
  File "I:\newwork\Tacotron-2-mandarin-new\tacotron\feeder.py", line 167, in _enqueue_next_train_group
    self._session.run(self._enqueue_op, feed_dict=feed_dict)
  File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 900, in run
    run_metadata_ptr)
  File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1135, in _run
    feed_dict_tensor, options, run_metadata)
  File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1316, in _do_run
    run_metadata)
  File "C:\Python36\lib\site-packages\tensorflow\python\client\session.py", line 1335, in _do_call
    raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.CancelledError: Enqueue operation was cancelled
	 [[Node: datafeeder/input_queue_enqueue = QueueEnqueueV2[Tcomponents=[DT_INT32, DT_INT32, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](datafeeder/input_queue, _arg_datafeeder/inputs_0_1, _arg_datafeeder/input_lengths_0_0, _arg_datafeeder/mel_targets_0_3, _arg_datafeeder/token_targets_0_5, _arg_datafeeder/linear_targets_0_2, _arg_datafeeder/targets_lengths_0_4)]]

Caused by op 'datafeeder/input_queue_enqueue', defined at:
  File "I:/newwork/Tacotron-2-mandarin-new/train.py", line 133, in <module>
    main()
  File "I:/newwork/Tacotron-2-mandarin-new/train.py", line 127, in main
    train(args, log_dir, hparams)
  File "I:/newwork/Tacotron-2-mandarin-new/train.py", line 51, in train
    checkpoint = tacotron_train(args, log_dir, hparams)
  File "I:\newwork\Tacotron-2-mandarin-new\tacotron\train.py", line 310, in tacotron_train
    return train(log_dir, args, hparams)
  File "I:\newwork\Tacotron-2-mandarin-new\tacotron\train.py", line 128, in train
    feeder = Feeder(coord, input_path, hparams)
  File "I:\newwork\Tacotron-2-mandarin-new\tacotron\feeder.py", line 86, in __init__
    self._enqueue_op = queue.enqueue(self._placeholders)
  File "C:\Python36\lib\site-packages\tensorflow\python\ops\data_flow_ops.py", line 346, in enqueue
    self._queue_ref, vals, name=scope)
  File "C:\Python36\lib\site-packages\tensorflow\python\ops\gen_data_flow_ops.py", line 4373, in queue_enqueue_v2
    timeout_ms=timeout_ms, name=name)
  File "C:\Python36\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper
    op_def=op_def)
  File "C:\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 3392, in create_op
    op_def=op_def)
  File "C:\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 1718, in __init__
    self._traceback = self._graph._extract_stack()  # pylint: disable=protected-access

CancelledError (see above for traceback): Enqueue operation was cancelled
	 [[Node: datafeeder/input_queue_enqueue = QueueEnqueueV2[Tcomponents=[DT_INT32, DT_INT32, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](datafeeder/input_queue, _arg_datafeeder/inputs_0_1, _arg_datafeeder/input_lengths_0_0, _arg_datafeeder/mel_targets_0_3, _arg_datafeeder/token_targets_0_5, _arg_datafeeder/linear_targets_0_2, _arg_datafeeder/targets_lengths_0_4)]]

@shartoo
Copy link

shartoo commented Aug 27, 2018

I'm training a fresh new model without using pre-trained model.

@shartoo
Copy link

shartoo commented Sep 26, 2018

Found the solution here relationshio of hop size and scale prod. Thank you !

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants