-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMutablePriorityQueue.h
122 lines (105 loc) · 2.68 KB
/
MutablePriorityQueue.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
/*
* MutablePriorityQueue.h
* A simple implementation of mutable priority queues, required by Dijkstra algorithm.
*
* Created on: 17/03/2018
* Author: Jo�o Pascoal Faria
*/
#ifndef SRC_MUTABLEPRIORITYQUEUE_H_
#define SRC_MUTABLEPRIORITYQUEUE_H_
#include <vector>
using namespace std;
/**
* class T must have: (i) accessible field int queueIndex; (ii) operator< defined.
*/
template <class T>
class MutablePriorityQueue {
vector<T *> H;
void heapifyUp(unsigned i);
void heapifyDown(unsigned i);
inline void set(unsigned i, T * x);
public:
//void heapifyUp(unsigned i);
//void heapifyDown(unsigned i);
MutablePriorityQueue();
void insert(T * x);
T * extractMin();
void decreaseKey(T * x);
void increaseKey(T * x);
bool empty();
bool inQueue(T* elemento);
};
// Index calculations
#define parent(i) ((i) / 2)
#define leftChild(i) ((i) * 2)
template <class T>
MutablePriorityQueue<T>::MutablePriorityQueue() {
H.push_back(nullptr);
// indices will be used starting in 1
// to facilitate parent/child calculations
}
template <class T>
bool MutablePriorityQueue<T>::empty() {
return H.size() == 1;
}
template <class T>
T* MutablePriorityQueue<T>::extractMin() {
auto x = H[1];
H[1] = H.back();
H.pop_back();
heapifyDown(1);
x->queueIndex = 0;
return x;
}
template <class T>
void MutablePriorityQueue<T>::insert(T *x) {
H.push_back(x);
heapifyUp(H.size()-1);
}
template <class T>
void MutablePriorityQueue<T>::decreaseKey(T *x) {
heapifyUp(x->queueIndex);
}
template <class T>
void MutablePriorityQueue<T>::increaseKey(T *x) {
heapifyDown(x->queueIndex);
}
template <class T>
void MutablePriorityQueue<T>::heapifyUp(unsigned i) {
auto x = H[i];
while (i > 1 && *x < *H[parent(i)]) {
set(i, H[parent(i)]);
i = parent(i);
}
set(i, x);
}
template <class T>
void MutablePriorityQueue<T>::heapifyDown(unsigned i) {
auto x = H[i];
while (true) {
unsigned k = leftChild(i);
if (k >= H.size())
break;
if (k+1 < H.size() && *H[k+1] < *H[k])
++k; // right child of i
if ( ! (*H[k] < *x) )
break;
set(i, H[k]);
i = k;
}
set(i, x);
}
template <class T>
void MutablePriorityQueue<T>::set(unsigned i, T * x) {
H[i] = x;
x->queueIndex = i;
}
template <class T>
bool MutablePriorityQueue<T>::inQueue(T* elemento) {
for (auto element : H) {
if (element == elemento)
return true;
}
return false;
}
#endif /* SRC_MUTABLEPRIORITYQUEUE_H_ */