Skip to content

Latest commit

 

History

History
247 lines (178 loc) · 7.02 KB

README.md

File metadata and controls

247 lines (178 loc) · 7.02 KB

Website | ArXiv | Get Start | Video

PIRenderer

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering" (ICCV2021)

The proposed PIRenderer can synthesis portrait images by intuitively controlling the face motions with fully disentangled 3DMM parameters. This model can be applied to tasks such as:

  • Intuitive Portrait Image Editing

    Intuitive Portrait Image Control

    Pose & Expression Alignment

  • Motion Imitation

    Same & Corss-identity Reenactment

  • Audio-Driven Facial Reenactment

    Audio-Driven Reenactment

News

  • 2021.9.20 Code for PyTorch is available!

Colab Demo

Coming soon

Get Start

1). Installation

Requirements

  • Python 3
  • PyTorch 1.7.1
  • CUDA 10.2

Conda Installation

# 1. Create a conda virtual environment.
conda create -n PIRenderer python=3.6
conda activate PIRenderer
conda install -c pytorch pytorch=1.7.1 torchvision cudatoolkit=10.2

# 2. Install other dependencies
pip install -r requirements.txt

2). Dataset

We train our model using the VoxCeleb. You can download the demo dataset for inference or prepare the dataset for training and testing.

Download the demo dataset

The demo dataset contains all 514 test videos. You can download the dataset with the following code:

./scripts/download_demo_dataset.sh

Or you can choose to download the resources with these links:

Google Driven & BaiDu Driven with extraction passwords ”p9ab“

Then unzip and save the files to ./dataset

Prepare the dataset

  1. The dataset is preprocessed follow the method used in First-Order. You can follow the instructions in their repo to download and crop videos for training and testing.

  2. After obtaining the VoxCeleb videos, we extract 3DMM parameters using Deep3DFaceReconstruction.

    The folder are with format as:

    ${DATASET_ROOT_FOLDER}
    └───path_to_videos
        └───train
            └───xxx.mp4
            └───xxx.mp4
            ...
        └───test
            └───xxx.mp4
            └───xxx.mp4
            ...
    └───path_to_3dmm_coeff
        └───train
            └───xxx.mat
            └───xxx.mat
            ...
        └───test
            └───xxx.mat
            └───xxx.mat
            ...
    

    News: We provide Scripts for extracting 3dmm coeffs from videos. Please check the DatasetHelper for more details.

  3. We save the video and 3DMM parameters in a lmdb file. Please run the following code to do this

    python scripts/prepare_vox_lmdb.py \
    --path path_to_videos \
    --coeff_3dmm_path path_to_3dmm_coeff \
    --out path_to_output_dir

3). Training and Inference

Inference

The trained weights can be downloaded by running the following code:

./scripts/download_weights.sh

Or you can choose to download the resources with these links:

Google Driven & Baidu Driven with extraction passwards "4sy1".

Then unzip and save the files to ./result/face.

Reenactment

Run the demo for face reenactment:

# same identity
python -m torch.distributed.launch --nproc_per_node=1 --master_port 12345 inference.py \
--config ./config/face_demo.yaml \
--name face \
--no_resume \
--output_dir ./vox_result/face_reenactment

# cross identity
python -m torch.distributed.launch --nproc_per_node=1 --master_port 12345 inference.py \
--config ./config/face_demo.yaml \
--name face \
--no_resume \
--output_dir ./vox_result/face_reenactment_cross \
--cross_id

The output results are saved at ./vox_result/face_reenactment and ./vox_result/face_reenactment_cross

Intuitive Control

Our model can generate results by providing intuitive controlling coefficients. We provide the following code for this task. Please note that you need to build the environment of DeepFaceRecon first.

# 1. Copy the provided scrips to the folder `Deep3DFaceRecon_pytorch`.
cp scripts/face_recon_videos.py ./Deep3DFaceRecon_pytorch
cp scripts/extract_kp_videos.py ./Deep3DFaceRecon_pytorch
cp scripts/coeff_detector.py ./Deep3DFaceRecon_pytorch
cp scripts/inference_options.py ./Deep3DFaceRecon_pytorch/options

cd Deep3DFaceRecon_pytorch

# 2. Extracte the 3dmm coefficients of the demo images.
python coeff_detector.py \
--input_dir ../demo_images \
--keypoint_dir ../demo_images \
--output_dir ../demo_images \
--name=model_name \
--epoch=20 \
--model facerecon   

# 3. control the source image with our model
cd ..
python -m torch.distributed.launch --nproc_per_node=1 --master_port 12345 intuitive_control.py \
--config ./config/face_demo.yaml \
--name face \
--no_resume \
--output_dir ./vox_result/face_intuitive \
--input_name ./demo_images

Train

Our model can be trained with the following code

python -m torch.distributed.launch --nproc_per_node=4 --master_port 12345 train.py \
--config ./config/face.yaml \
--name face

Citation

If you find this code is helpful, please cite our paper

@misc{ren2021pirenderer,
      title={PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering}, 
      author={Yurui Ren and Ge Li and Yuanqi Chen and Thomas H. Li and Shan Liu},
      year={2021},
      eprint={2109.08379},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgement

We build our project base on imaginaire. Some dataset preprocessing methods are derived from video-preprocessing.