-
Notifications
You must be signed in to change notification settings - Fork 182
/
Copy pathmodels_pyg.py
executable file
·43 lines (37 loc) · 1.61 KB
/
models_pyg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch
import torch.nn.functional as F
import torch_geometric.transforms as T
from torch_geometric.nn import GCNConv, GATConv
class GCNNet(torch.nn.Module):
def __init__(self, input_dim, hidden_dim, label_dim, num_layers,
pred_hidden_dims=[], concat=True, bn=True, dropout=0.0, add_self=False, args=None):
super(GCNNet, self).__init__()
self.input_dim = input_dim
print ('GCNNet input_dim:', self.input_dim)
self.hidden_dim = hidden_dim
print ('GCNNet hidden_dim:', self.hidden_dim)
self.label_dim = label_dim
print ('GCNNet label_dim:', self.label_dim)
self.num_layers = num_layers
print ('GCNNet num_layers:', self.num_layers)
# self.concat = concat
# self.bn = bn
# self.add_self = add_self
self.args = args
self.dropout = dropout
self.act = F.relu
self.convs = torch.nn.ModuleList()
self.convs.append(GCNConv(self.input_dim, self.hidden_dim))
for layer in range(self.num_layers - 2):
self.convs.append(GCNConv(self.hidden_dim, self.hidden_dim))
self.convs.append(GCNConv(self.hidden_dim, self.label_dim))
print ('len(self.convs):', len(self.convs))
def forward(self, data):
x, edge_index, batch = data.feat, data.edge_index, data.batch
for i in range(self.num_layers):
x = self.convs[i](x, edge_index)
x = F.relu(x)
x = F.dropout(x, p=self.dropout, training=self.training)
return F.log_softmax(x, dim=1)
def loss(self, pred, label):
return F.nll_loss(pred, label)