forked from IrisRainbowNeko/ML-Danbooru
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_ca.py
159 lines (131 loc) · 6.11 KB
/
demo_ca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import argparse
import time
import torch
import torch.nn.parallel
import torch.optim
import torch.utils.data.distributed
import torchvision.transforms as transforms
from src_files.helper_functions.bn_fusion import fuse_bn_recursively
from src_files.helper_functions.helper_functions import crop_fix
from src_files.models.tresnet.tresnet import InplacABN_to_ABN
from src_files.models import create_model
from tqdm.auto import tqdm
import json
from PIL import Image
import warnings
warnings.filterwarnings("ignore")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
IMAGE_EXTENSIONS = [".png", ".jpg", ".jpeg", ".webp", ".bmp"]
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
def make_args():
parser = argparse.ArgumentParser(description='ML-Danbooru Demo')
parser.add_argument('--data', type=str, default='')
parser.add_argument('--ckpt', type=str, default='')
parser.add_argument('--class_map', type=str, default='./class.json')
parser.add_argument('--model_name', default='caformer_m36')
parser.add_argument('--num_classes', default=12547)
parser.add_argument('--image_size', default=448, type=int,
metavar='N', help='input image size')
parser.add_argument('--thr', default=0.75, type=float,
metavar='N', help='threshold value')
parser.add_argument('--keep_ratio', type=str2bool, default=False)
# ML-Decoder
parser.add_argument('--use_ml_decoder', default=0, type=int)
parser.add_argument('--fp16', action="store_true", default=False)
parser.add_argument('--ema', action="store_true", default=False)
parser.add_argument('--frelu', type=str2bool, default=True)
parser.add_argument('--xformers', type=str2bool, default=False)
# CAFormer
parser.add_argument('--decoder_embedding', default=384, type=int)
parser.add_argument('--num_layers_decoder', default=4, type=int)
parser.add_argument('--num_head_decoder', default=8, type=int)
parser.add_argument('--num_queries', default=80, type=int)
parser.add_argument('--scale_skip', default=1, type=int)
parser.add_argument('--out_type', type=str, default='json')
args = parser.parse_args()
# python demo.py --data <path to image or directory> --model_name tresnet_d --num_of_groups 32 --ckpt <path to ckpt> --thr 0.7 --image_size 640
# python demo.py --data <path to image or directory> --model_name tresnet_d --num_of_groups 32 --ckpt <path to ckpt> --thr 0.7 --image_size 640 --keep_ratio True
# python demo_ca.py --data imgs/t1.jpg --model_name caformer_m36 --ckpt ckpt/caformer_m36-2-20000.ckpt --thr 0.7 --image_size 448
args.data = "imgs/girl.jpg"
args.data = "imgs/"
args.model_name = "caformer_m36"
args.ckpt = "ckpt/ml_caformer_m36_fp16_dec-5-97527.ckpt"
# args.fp16=True
return args
class Demo:
def __init__(self, args):
self.args=args
print('creating model {}...'.format(args.model_name))
args.model_path = None
model = create_model(args, load_head=True).to(device)
state = torch.load(args.ckpt, map_location='cpu')
if args.ema:
state = state['ema']
elif 'model' in state:
state=state['model']
model.load_state_dict(state, strict=True)
self.model = model.to(device).eval()
if args.fp16:
self.model = self.model.half()
#######################################################
print('done')
if args.keep_ratio:
self.trans = transforms.Compose([
transforms.Resize(args.image_size),
crop_fix,
transforms.ToTensor(),
])
else:
self.trans = transforms.Compose([
transforms.Resize((args.image_size, args.image_size)),
transforms.ToTensor(),
])
self.load_class_map()
def load_class_map(self):
with open(self.args.class_map, 'r') as f:
self.class_map = json.loads(f.read())
def load_data(self, path):
img = Image.open(path).convert('RGB')
img = self.trans(img)
return img
def infer_one(self, img):
if self.args.fp16:
img = img.half()
img = img.unsqueeze(0)
output = torch.sigmoid(self.model(img)).cpu().view(-1)
pred = torch.where(output > self.args.thr)[0].numpy()
cls_list = [(self.class_map[str(i)], output[i]) for i in pred]
return cls_list
@torch.no_grad()
def infer(self, path):
if os.path.isfile(path):
img = self.load_data(path).to(device)
cls_list = self.infer_one(img)
return cls_list
else:
tag_dict = {}
img_list = [os.path.join(path, x) for x in os.listdir(path) if x[x.rfind('.'):].lower() in IMAGE_EXTENSIONS]
for item in tqdm(img_list):
img = self.load_data(item).to(device)
cls_list = self.infer_one(img)
cls_list.sort(reverse=True, key=lambda x: x[1])
if self.args.out_type == 'txt':
with open(item[:item.rfind('.')] + '.txt', 'w', encoding='utf8') as f:
f.write(', '.join([name.replace('_', ' ') for name, prob in cls_list]))
elif self.args.out_type == 'json':
tag_dict[os.path.basename(item)] = ', '.join([name.replace('_', ' ') for name, prob in cls_list])
if self.args.out_type == 'json':
with open(os.path.join(path, 'image_captions.json'), 'w', encoding='utf8') as f:
f.write(json.dumps(tag_dict))
return None
#python demo_ca.py --data imgs/t1.jpg --model_name caformer_m36 --ckpt ckpt/caformer_m36-2-20000.ckpt --thr 0.7 --image_size 448
if __name__ == '__main__':
args = make_args()
demo = Demo(args)
cls_list = demo.infer(args.data)
if cls_list is not None:
cls_list.sort(reverse=True, key=lambda x: x[1])
print(', '.join([f'{name}:{prob:.3}' for name, prob in cls_list]))
print(', '.join([name for name, prob in cls_list]))