-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_music.py
110 lines (97 loc) · 4.06 KB
/
create_music.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
"""
Code was heavily inspired by the following tutorial:
https://towardsdatascience.com/how-to-generate-music-using-a-lstm-neural-network-in-keras-68786834d4c5
"""
# This file generates music using a trained model
from functions import *
from keras.layers import BatchNormalization as BatchNorm
from keras.layers import Dropout
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import Activation
from keras.models import Sequential
import numpy
# GENERATE
# Function that generates music
def generate():
# Get the notes used in training the model
#with open('data/notes_parsed/notes_classical_test', 'rb') as filepath:
with open('data/notes_parsed/notes_bach', 'rb') as filepath:
notes = pickle.load(filepath)
#with open('data/notes_parsed/notes_class', 'rb') as filepath:
# notes = pickle.load(filepath)
# Pitch names from notes set
pitchnames = sorted(set(item for item in notes))
# Length of notes set
notes_len = len(set(notes))
# Create network input
network_input, normalized_input = get_input(notes, pitchnames, notes_len)
# Create model
model = create_network(normalized_input, notes_len)
# Prediction output used for generating notes
prediction_output = predicted_notes(model, network_input, pitchnames, notes_len)
# Convert prediction output to a midi file
output_midi(prediction_output, "generate_bach")
# GET_INPUT
# Function that given parsed notes as argument, shapes them as input for model
def get_input(notes, pitchnames, notes_len):
# Note to integer map
note_to_int = dict((note, number) for number, note in enumerate(pitchnames))
sequence_length = 100
# sequence_length = 250
network_input = []
for i in range(0, len(notes) - sequence_length, 1):
sequence_in = notes[i:i + sequence_length]
sequence_out = notes[i + sequence_length]
network_input.append([note_to_int[char] for char in sequence_in])
# Innput is incompatible with LSTM layers, fix that
n_patterns = len(network_input)
normalized_input = numpy.reshape(network_input, (n_patterns, sequence_length, 1))
normalized_input = normalized_input / float(notes_len)
return (network_input, normalized_input)
# CREATE_NETWORK
# Function for creating the LSTM neural network
def create_network(network_input, notes_len):
model = Sequential()
model.add(LSTM(
512,
input_shape=(network_input.shape[1], network_input.shape[2]),
recurrent_dropout=0.3,
return_sequences=True
))
model.add(LSTM(512, return_sequences=True, recurrent_dropout=0.3,))
model.add(LSTM(512))
model.add(BatchNorm())
model.add(Dropout(0.3))
model.add(Dense(256))
model.add(Activation('relu'))
model.add(BatchNorm())
model.add(Dropout(0.3))
model.add(Dense(notes_len))
model.add(Activation('softmax'))
#model.compile(loss='categorical_crossentropy', optimizer='adam')
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
# Load the weights to each node
#model.load_weights('weights_classical_test.hdf5')
model.load_weights('weights-bach-05.hdf5')
return model
# PREDICTED_NOTES
# Function that predicts notes given a trained model
def predicted_notes(model, network_input, pitchnames, notes_len):
# Choose random sequence used for prediction using trained model
start = numpy.random.randint(0, len(network_input)-1)
int_to_note = dict((number, note) for number, note in enumerate(pitchnames))
pattern = network_input[start]
prediction_output = []
# Generate 500 notes
for note_index in range(500):
prediction_input = numpy.reshape(pattern, (1, len(pattern), 1))
prediction_input = prediction_input / float(notes_len)
# Use the trained model to predict notes
prediction = model.predict(prediction_input, verbose=0)
index = numpy.argmax(prediction)
result = int_to_note[index]
prediction_output.append(result)
pattern.append(index)
pattern = pattern[1:len(pattern)]
return prediction_output