-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathVAE.py
381 lines (320 loc) · 11.6 KB
/
VAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import os
import torch
import torch.optim as opt
import torch.nn as nn
import torch.nn.functional as fn
from torch.distributions.multivariate_normal import MultivariateNormal
from torchvision import datasets, transforms, utils
import scipy.io as sio
import numpy as np
class Encoder(nn.Module):
"""VAE Encoder - maps inputs to mean and covariance vectors"""
def __init__(self, data_size=784, latent_size=2):
"""c-tor
Args:
data_size (int): Size of the input data vectors
latent_size (int): Size of the latent dimension
"""
super(Encoder, self).__init__()
self.fc1 = nn.Linear(data_size, int(data_size // 4))
self.fc2 = nn.Linear(int(data_size // 4), int(data_size // 16))
self.out_mean = nn.Linear(int(data_size // 16), latent_size)
self.out_std = nn.Linear(int(data_size // 16), latent_size)
def forward(self, x):
"""Encode data to latent mean and covariance vectors
Args:
x (torch.Tensor): Input data tensor
Returns:
(torch.Tensor): Output latent mean vector
(torch.Tensor): Output latent log standard deviation vector
"""
x = fn.relu(self.fc1(x))
x = fn.relu(self.fc2(x))
return self.out_mean(x), self.out_std(x)
class Decoder(nn.Module):
"""VAE Decoder - maps latent samples to data estimates"""
def __init__(self, latent_size=2, data_size=784):
"""c-tor
Args:
latent_size (int): Size of the input latent dimension
data_size (int): Size of the output data vectors
"""
super(Decoder, self).__init__()
self.fc1 = nn.Linear(latent_size, int(data_size // 16))
self.fc2 = nn.Linear(int(data_size // 16), int(data_size // 4))
self.out = nn.Linear(int(data_size // 4), data_size)
def forward(self, x):
"""Encode data to latent mean and covariance vectors
Args:
x (torch.Tensor): Input latent tensor
Returns:
(torch.Tensor): Output reconstruction data vector
"""
x = fn.relu(self.fc1(x))
x = fn.relu(self.fc2(x))
x = self.out(x)
return torch.sigmoid(x)
class VAE(nn.Module):
"""Variational AutoEncoder implementation"""
def __init__(self, data_size=784, latent_size=2):
"""c-tor
Args:
data_size (int): Size of the input data vectors
latent_size (int): Size of the latent dimension
"""
super(VAE, self).__init__()
self.enc = Encoder(data_size=data_size, latent_size=latent_size)
self.dec = Decoder(latent_size=latent_size, data_size=data_size)
def forward(self, x):
"""Forward pass
Args:
x (torch.Tensor): Input data
Returns:
(torch.Tensor): Reconstructed image
(torch.Tensor): Latent mean vector
(torch.Tensor): Latent log variance vector
"""
# Encode to latent mean and log variance
mean, logvar = self.enc(x)
std = torch.exp(0.5 * logvar)
# Re-parameterize and sample
eps = torch.randn_like(std)
z = mean + std * eps
# Decode
x_hat = self.dec(z)
return x_hat, mean, logvar
def decode(self, z):
"""Decode a latent sample
Args:
z (torch.Tensor): Latent sample
Returns:
(torch.Tensor): Decoded data vector
"""
return self.dec(z)
def encode(self,x):
"""Encode an input
Args:
x (torch.Tensor): Input
Returns:
(torch.Tensor): Encoded data vector
"""
mean, std = self.enc(x)
epsilon = torch.randn_like(std)
z = mean + std * epsilon
return z.data.numpy()
def loss_fn(self, x, x_hat, mean, logvar):
"""Get VAE loss
Args:
x (torch.Tensor): Ground truth input
x_hat (torch.Tensor): Reconstructed output
mean (torch.Tensor): Latent mean vector
logvar (torch.Tensor): Latent log variance vector
Returns:
(torch.Tensor): Loss
"""
# Compute reconstruction loss (BCE)
loss_bce = fn.binary_cross_entropy(x_hat, x, reduction='sum')
# Compute regularizing loss (KL divergence)
loss_kld = -0.5 * torch.sum(1 + logvar - mean ** 2 - logvar.exp())
return loss_bce + loss_kld
def save_autoencoder(self, save_path):
"""Save the autoencoder model.
Args:
save_path (str): path where to save the autoencoder"""
torch.save({'model_state_dict': self.state_dict()},
save_path)
print("Model saved in path: %s" % save_path)
def load_autoencoder(self,save_path):
"""Use the trained encoder saved in the file "saved_path" to reduce the input dimension
Args:
save_path (str): path where the file containing the autoencoder model is saved"""
print("Load autoencoder...")
checkpoint = torch.load(save_path)
self.load_state_dict(checkpoint['model_state_dict'])
# optimizer.load_state_dict(checkpoint)
self.eval()
print("Autoencoder loaded.")
def segment_data(data, h):
"""Segment input and target data for DDAE
Args:
data (numpy array): Nx16 Numpy array of input data
h (int): Dynamics horizon, 0 corresponds to a regular denoising AE
Returns:
(numpy array): Input data
(numpy array): Target data
"""
assert h >= 0,\
"Dynamics horizon must be h >= 0, but was {}".format(h)
# Apply dynamics horizon offset to segment training and testing data
if h == 0:
input = data.copy()
target = data.copy()
else:
input = data[0:-h, :].copy()
target = data[h:].copy()
return input, target
def main():
"""Main function"""
use_gpu = False
device = torch.device(
"cuda" if torch.cuda.is_available() and use_gpu
else "cpu"
)
batch_size = 256
seed = 1337
latent_size = 15
log_interval = 20
h = 2
# Set seed
torch.manual_seed(seed)
# Load dataset
# trf = transforms.Compose([
# transforms.ToTensor(),
# #transforms.Normalize((0.1307,), (0.3081,)),
# transforms.Lambda(lambda t: t.flatten())
# ])
# train_loader = torch.utils.data.DataLoader(
# datasets.FashionMNIST(".", train=True, transform=trf, download=True),
# shuffle=True,
# batch_size=batch_size,
# )
# test_loader = torch.utils.data.DataLoader(
# datasets.FashionMNIST(".", train=False, transform=trf, download=True),
# shuffle=True,
# batch_size=batch_size,
# )
print("Loading data...")
mat = sio.loadmat('observations_mid_random_normalized.mat')
dataset = mat['observations']
# inputs, targets = segment_data(data=dataset,
# h=h
# )
# N = len(dataset)
# splitting_percentage = 0.7
#
# # Split the data into training and testing sets
# splitting_int = int(round(splitting_percentage * N, 0))
# training_data = inputs[:splitting_int]
# training_labels = targets[:splitting_int]
# testing_data = inputs[splitting_int:]
# testing_labels = targets[splitting_int:]
#
# training_data_tensor = torch.utils.data.TensorDataset(torch.stack([torch.Tensor(i) for i in training_data]),
# torch.stack([torch.Tensor(i) for i in training_labels])
# )
# testing_data_tensor = torch.utils.data.TensorDataset(torch.stack([torch.Tensor(i) for i in testing_data]),
# torch.stack([torch.Tensor(i) for i in testing_labels])
# )
#
# train_loader = torch.utils.data.DataLoader(training_data_tensor,
# shuffle=True,
# batch_size=batch_size,
# )
# test_loader = torch.utils.data.DataLoader(testing_data_tensor,
# shuffle=True,
# batch_size=batch_size,
# )
print("Data loaded.")
# print(train_loader)
mdl = VAE(data_size= len(dataset[0]),
latent_size=latent_size).to(device)
optimizer = opt.Adam(mdl.parameters(), lr=1e-3)
mdl.load_autoencoder("./VAE.pt")
datapoint = dataset[0]
print(mdl.encode(torch.Tensor(datapoint)))
#print("Load autoencoder...")
#checkpoint = torch.load("./VAE.pt")
#mdl.load_state_dict(checkpoint['model_state_dict'])
#optimizer.load_state_dict(checkpoint)
#mdl.eval()
#print("Autoencoder loaded.")
# try:
# os.mkdir("FashionMNIST-results")
# except FileExistsError:
# pass
#
# for epoch in range(5):
#
# # Train model
# mdl.train()
# train_loss = 0
# #for el in enumerate(train_loader):
# # print(el)
#
# for batch_idx, (data, _) in enumerate(train_loader):
# #data = data[0]
# data.to(device)
# optimizer.zero_grad()
#
# # data[0].to(device)
# # optimizer.zero_grad()
# # print(data[0])
#
# x_hat, mean, logvar = mdl(data)
# loss = mdl.loss_fn(data, x_hat, mean, logvar)
# loss.backward()
# train_loss += loss.item()
# optimizer.step()
#
# if batch_idx % log_interval == 0:
# print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
# epoch,
# batch_idx * len(data),
# len(train_loader.dataset),
# 100.0 * batch_idx / len(train_loader),
# loss.item() / len(data)
# ))
#
# print('====> Epoch: {} Average loss: {:.4f}'.format(
# epoch,
# train_loss / len(train_loader.dataset)
# ))
#
# # Test model
# mdl.eval()
# test_loss = 0
# with torch.no_grad():
# for batch_idx, (data, _) in enumerate(test_loader):
# #data = data[0]
# data = data.to(device)
# x_hat, mean, logvar = mdl(data)
# loss = mdl.loss_fn(data, x_hat, mean, logvar)
# test_loss += loss
#
# mdl.save_autoencoder(save_path="./VAEh2.pt")
# # Save a comparison of the reconstruction
# if batch_idx == 0:
# num_rows = 8
# comparison = torch.cat([
# data.view(-1, 1, 28, 28)[:num_rows],
# x_hat.view(-1, 1, 28, 28)[:num_rows]
# ])
# utils.save_image(
# comparison.cpu(),
# f'FashionMNIST-results/reconstruction_{epoch}.png',
# nrow=num_rows
# )
#
# # Visualise latent space
# with torch.no_grad():
# sample = torch.randn(64, latent_size).to(device)
# sample = mdl.decode(sample).cpu()
# utils.save_image(
# sample.view(64, 1, 28, 28),
# f'FashionMNIST-results/sample_{epoch}.png'
# )
if __name__ == '__main__':
main()