-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
126 lines (100 loc) · 3.94 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from typing import List, Tuple, NewType
import math
import os
import cv2
import numpy
from skimage.color import rgb2hsv
from tqdm import tqdm
from loguru import logger
from pathos.pools import ProcessPool
from sklearn.cluster import MiniBatchKMeans
from sklearn.utils import shuffle
from scipy.spatial import distance
Pixel = NewType("Pixel", Tuple[int, int, int])
Image = NewType("Image", numpy.dtype)
def files_in_directory(directory: str) -> List[Image]:
filenames = [
os.path.join(root, name)
for root, _, files in os.walk(directory)
for name in files
]
pool = ProcessPool(nodes=os.cpu_count())
results = pool.imap(lambda f: cv2.imread(f), filenames)
return [r for r in tqdm(results, total=len(filenames)) if r is not None]
def normalize(
images: List[Image], size: int, to_resize: bool = True, to_hsv: bool = False
) -> List[Image]:
def _resize(image: Image, size: int, to_hsv: bool) -> Image:
image = cv2.resize(image, (size, size))
if to_hsv:
image = rgb2hsv(image) * 255
return image
pool = ProcessPool(nodes=os.cpu_count())
results = pool.imap(_resize, images, [size] * len(images), [to_hsv] * len(images))
if not to_resize:
results = images
return list(tqdm(results, total=len(images)))
def quantize_image(image: Image) -> Pixel:
pixels = numpy.float32(image.reshape(-1, 3))
n_colours = 5
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 200, 0.1)
flags = cv2.KMEANS_RANDOM_CENTERS
_, labels, centroid = cv2.kmeans(pixels, n_colours, None, criteria, 10, flags)
labels = labels.flatten().tolist()
_, counts = numpy.unique(labels, return_counts=True)
dominant = centroid[numpy.argmax(counts)]
return dominant
def quantize(images: List[Image]) -> List[Pixel]:
pool = ProcessPool(nodes=os.cpu_count())
results = pool.imap(quantize_image, images)
return list(tqdm(results, total=len(images)))
def build_grid(
input_img: Image, images: List[Image], pixel_list: List[Pixel], window_size
):
def _find_closests_pixel(pixel: Pixel, pixel_list: List[Pixel]) -> int:
results = map(lambda x: distance.euclidean(pixel, x), pixel_list)
results = list(results)
return numpy.argmin(results)
height, width, _ = input_img.shape
rois = list(
input_img[y : y + window_size, x : x + window_size]
for y in range(0, height, window_size)
for x in range(0, width, window_size)
)
output_rows = int(math.ceil(height / window_size))
output_cols = int(math.ceil(width / window_size))
logger.info("quantizing to grid image")
quantized_colors = quantize(rois)
logger.info("finding closests images")
pool = ProcessPool(nodes=os.cpu_count())
results = pool.imap(
_find_closests_pixel, quantized_colors, [pixel_list] * len(rois)
)
results = list(tqdm(results, total=len(rois)))
logger.info("assemblying grid")
grid_image = None
for i in range(output_rows):
for j in range(output_cols):
pos = i * output_cols + j
img = images[results[pos]]
row = cv2.hconcat([row, img]) if j else img
grid_image = cv2.vconcat([grid_image, row]) if i else row
return grid_image
IMAGES_DIRECTORY = "pixel_images"
IMAGE_TO_GRID = "original.jpg"
SUB_IMAGE_SIZE = 16
logger.debug("to grid image read")
to_grid_img = cv2.imread(IMAGE_TO_GRID)
to_grid_img = rgb2hsv(to_grid_img) * 255
logger.info("reading files")
images = files_in_directory(IMAGES_DIRECTORY)
logger.info(f"{len(images)} retrieved files")
logger.info("images normalizing")
images_hsv = normalize(images, SUB_IMAGE_SIZE, to_hsv=True)
images_ = normalize(images, SUB_IMAGE_SIZE, to_hsv=False)
logger.info("quantizing color")
quantized_colors = quantize(images_hsv)
logger.info("building grid")
grid_image = build_grid(to_grid_img, images_, quantized_colors, SUB_IMAGE_SIZE)
cv2.imwrite("grid_image.png", grid_image)
logger.info("done")