-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpl_pie_muster23_forecast.py
222 lines (176 loc) · 9.1 KB
/
pl_pie_muster23_forecast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import torch
from torch import nn
from torchvision import transforms as A
from torch.utils.data import DataLoader
from torch.nn import functional as F
import pytorch_lightning as pl
from torchmetrics.functional.classification.accuracy import accuracy
from sklearn.metrics import balanced_accuracy_score
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.callbacks import LearningRateMonitor
from pie_dataloader23 import DataSet
from models.ped_graph23 import pedMondel
from pathlib import Path
import argparse
import os
import numpy as np
def seed_everything(seed):
torch.cuda.empty_cache()
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
class LitPedGraph(pl.LightningModule):
def __init__(self, args, len_tr):
super(LitPedGraph, self).__init__()
self.balance = args.balance
self.total_steps = len_tr * args.epochs
self.lr = args.lr
self.epochs = args.epochs
self.ch = 4 if args.H3D else 3
self.ch1, self.ch2 = 32, 64
# nodes=19
self.frames = args.frames
self.velocity = args.velocity
self.time_crop = args.time_crop
tr_nsamples = [9974, 5956, 7867]
self.tr_weight = torch.from_numpy(np.min(tr_nsamples) / tr_nsamples).float().cuda()
te_nsamples = [9921, 5346, 3700]
self.te_weight = torch.from_numpy(np.min(te_nsamples) / te_nsamples).float().cuda()
val_nsamples = [3404, 1369, 1813]
self.val_weight = torch.from_numpy(np.min(val_nsamples) / val_nsamples).float().cuda()
self.model = pedMondel(args.frames, args.velocity, seg=args.seg, h3d=args.H3D, n_clss=3)
def forward(self, kp, f, v):
y = self.model(kp, f, v)
return y
def training_step(self, batch, batch_nb):
x = batch[0]
y = batch[1]
f = batch[2] if self.frames else None
v = batch[3] if self.velocity else None
if np.random.randint(10) >= 5 and self.time_crop:
crop_size = np.random.randint(2, 21)
x = x[:, :, -crop_size:]
logits = self(x, f, v)
w = None if self.balance else self.tr_weight
y_onehot = torch.FloatTensor(y.shape[0], 3).to(y.device).zero_()
y_onehot.scatter_(1, y.long(), 1)
loss = F.binary_cross_entropy_with_logits(logits, y_onehot, weight=w)
preds = logits.softmax(1).argmax(1)
acc = balanced_accuracy_score(preds.view(-1).long().cpu(), y.view(-1).long().cpu())
self.log('train_loss', loss, prog_bar=True)
self.log('train_acc', acc*100.0, prog_bar=True)
return loss
def validation_step(self, batch, batch_nb):
x = batch[0]
y = batch[1]
f = batch[2] if self.frames else None
v = batch[3] if self.velocity else None
logits = self(x, f, v)
w = None if self.balance else self.val_weight
y_onehot = torch.FloatTensor(y.shape[0], 3).to(y.device).zero_()
y_onehot.scatter_(1, y.long(), 1)
loss = F.binary_cross_entropy_with_logits(logits, y_onehot, weight=w)
preds = logits.softmax(1).argmax(1)
acc = balanced_accuracy_score(preds.view(-1).long().cpu(), y.view(-1).long().cpu())
self.log('val_loss', loss, prog_bar=True)
self.log('val_acc', acc*100.0, prog_bar=True)
return loss
def test_step(self, batch, batch_nb):
x = batch[0]
y = batch[1]
f = batch[2] if self.frames else None
v = batch[3] if self.velocity else None
logits = self(x, f, v)
w = None if self.balance else self.te_weight
y_onehot = torch.FloatTensor(y.shape[0], 3).to(y.device).zero_()
y_onehot.scatter_(1, y.long(), 1)
loss = F.binary_cross_entropy_with_logits(logits, y_onehot, weight=w)
preds = logits.softmax(1).argmax(1)
acc = balanced_accuracy_score(preds.view(-1).long().cpu(), y.view(-1).long().cpu())
self.log('test_loss', loss, prog_bar=True)
self.log('test_acc', acc*100.0, prog_bar=True)
return loss
def configure_optimizers(self):
optm = torch.optim.AdamW(self.parameters(), lr=self.lr, weight_decay=1e-3)
lr_scheduler = {'name':'OneCycleLR', 'scheduler':
torch.optim.lr_scheduler.OneCycleLR(optm, max_lr=self.lr, div_factor=10.0, total_steps=self.total_steps, verbose=False),
'interval': 'step', 'frequency': 1,}
return [optm], [lr_scheduler]
def data_loader(args):
transform = A.Compose(
[
A.ToPILImage(),
A.RandomPosterize(bits=2),
A.RandomInvert(p=0.2),
A.RandomSolarize(threshold=50.0),
A.RandomAdjustSharpness(sharpness_factor=2),
A.RandomAutocontrast(p=0.2),
A.RandomEqualize(p=0.2),
A.ColorJitter(0.5, 0.3),
A.GaussianBlur(kernel_size=(3, 3), sigma=(0.1, 2)),
A.ToTensor(),
A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
tr_data = DataSet(path=args.data_path, pie_path=args.pie_path, data_set='train', frame=True, vel=True, balance=False, transforms=transform, seg_map=args.seg, h3d=args.H3D, forecast=args.forecast)
te_data = DataSet(path=args.data_path, pie_path=args.pie_path, data_set='test', frame=True, vel=True, balance=False, transforms=transform, seg_map=args.seg, h3d=args.H3D, t23=False, forecast=args.forecast)
val_data = DataSet(path=args.data_path, pie_path=args.pie_path, data_set='val', frame=True, vel=True, balance=False, transforms=transform, seg_map=args.seg, h3d=args.H3D, forecast=args.forecast)
tr = DataLoader(tr_data, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True)
te = DataLoader(te_data, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, pin_memory=True)
val = DataLoader(val_data, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, pin_memory=True)
return tr, te, val
def main(args):
seed_everything(args.seed)
try:
m_feat = args.logdir.split('/')[-2].split('-')[2]
except IndexError:
m_feat = 'N'
args.frames = True if 'I' in m_feat else False
args.velocity = True if 'V' in m_feat else False
args.seg = True if 'S' in m_feat else False
args.forecast = True if 'F' in m_feat else False
args.time_crop = True if 'T' in m_feat else False
args.H3D = False if args.logdir.split('/')[-2].split('-')[-1] == 'h2d' else True
tr, te, val = data_loader(args)
mymodel = LitPedGraph(args, len(tr))
if not Path(args.logdir).is_dir():
os.mkdir(args.logdir)
checkpoint_callback = ModelCheckpoint(
dirpath=args.logdir,
monitor='val_acc',
save_top_k=5,
filename='pie23-{epoch:02d}-{val_acc:.3f}', mode='max', save_weights_only=True)
lr_monitor = LearningRateMonitor(logging_interval='step')
trainer = pl.Trainer(
gpus=[args.device], max_epochs=args.epochs,
auto_lr_find=True, callbacks=[checkpoint_callback, lr_monitor],
precision=16,)
trainer.tune(mymodel, tr)
trainer.fit(mymodel, tr, val)
torch.save(mymodel.model.state_dict(), args.logdir + 'last.pth')
trainer.test(mymodel, te, ckpt_path='best')
torch.save(mymodel.model.state_dict(), args.logdir + 'best.pth')
print('finish')
if __name__ == "__main__":
torch.cuda.empty_cache()
parser = argparse.ArgumentParser("Pedestrian prediction crosing")
parser.add_argument('--logdir', type=str, default="./data/pie-23-IVSFT/", help="logger directory for tensorboard")
parser.add_argument('--device', type=str, default=0, help="GPU")
parser.add_argument('--epochs', type=int, default=30, help="Number of eposch to train")
parser.add_argument('--lr', type=int, default=0.0002, help='learning rate to train')
parser.add_argument('--data_path', type=str, default='./data/PIE', help='Path to the train and test data')
parser.add_argument('--batch_size', type=int, default=2, help="Batch size for training and test")
parser.add_argument('--num_workers', type=int, default=0, help="Number of workers for the dataloader")
parser.add_argument('--frames', type=bool, default=False, help='avtivate the use of raw frames')
parser.add_argument('--velocity', type=bool, default=False, help='activate the use of the odb and gps velocity')
parser.add_argument('--seg', type=bool, default=False, help='Use the segmentation map')
parser.add_argument('--forecast', type=bool, default=False, help='Use the human pose forcasting data')
parser.add_argument('--time_crop', type=bool, default=False, help='Use random time trimming')
parser.add_argument('--H3D', type=bool, default=True, help='Use 3D human keypoints')
parser.add_argument('--pie_path', type=str, default='./PIE')
parser.add_argument('--balance', type=bool, default=True, help='Balnce or not the data set')
parser.add_argument('--seed', type=int, default=42)
args = parser.parse_args()
main(args)