-
Notifications
You must be signed in to change notification settings - Fork 3
/
benchmark.py
340 lines (270 loc) · 13 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import numpy as np
import pandas as pd
import torch
import cv2
from e2v_utils import LossFn, hotpix_torch, IntensityRescaler
from skimage.measure import compare_mse, compare_ssim
import argparse
import os.path as osp
import tqdm
class testset:
def __init__(self, root_dir, ev_rate, norm_e, e_abs, num_freams):
self.num_frm = num_freams
self.norm_e = norm_e
self.e_abs = e_abs
self.bs = 1
self.h = 180
self.w = 240
self.img_num = 0
self.bins = 5
self.root_dir = root_dir + '/'
self.events_file = 'events.txt'
self.img_file = 'images.txt'
self.num_events = int(ev_rate * self.h * self.w)
self.args = [self.bins, self.w, self.h] # num_bins, width, height
self.iterator = pd.read_csv(self.root_dir + self.events_file, header=None,
delimiter=' ',
names=['t', 'x', 'y', 'p'],
dtype={'t': np.float64, 'x': np.int16, 'y': np.int16, 'p': np.int16},
engine='c',
index_col=False)
self.img_metadata = pd.read_csv(self.root_dir + self.img_file,
delimiter=' ',
header=None, names=['t', 'fname'],
index_col=False)
self.time_stamps = pd.read_csv(self.root_dir + 'time_stamp.csv')
max_time_stamp = self.time_stamps.iloc[num_freams + 1][1]
self.iterator = self.iterator[:max_time_stamp + 1]
def getitem(self, item):
first_time_stamp = self.time_stamps.iloc[item][1]
new_time_stamp = self.time_stamps.iloc[item + 1][1]
event_tensor = self.iterator.values[first_time_stamp:new_time_stamp]
num_evs = event_tensor.shape[0] // self.num_events
if num_evs == 0:
num_evs = 1
event_tensor = np.array_split(event_tensor, num_evs, axis=0)
evs = torch.zeros(num_evs, 5, self.h, self.w)
img_name = self.root_dir + self.img_metadata.fname[item]
with torch.no_grad():
for i in range(num_evs):
ev_ten = torch.from_numpy(event_tensor[i])
if self.e_abs:
ev_ten[:, 3][ev_ten[:, 3] == -1] = 1
ev_ten[:, 3][ev_ten[:, 3] == 0] = 1
evs[i] = self.events_to_voxel_grid_pytorch(ev_ten, *self.args)
if self.norm_e:
evs[i] = self.norm(evs[i])
img = cv2.imread(img_name, cv2.IMREAD_GRAYSCALE) / 255.0
img = torch.from_numpy(img).float()
return evs, img
def norm(self, events):
with torch.no_grad():
nonzero_ev = (events != 0)
num_nonzeros = nonzero_ev.sum()
if num_nonzeros > 0:
mean = events.sum() / num_nonzeros
stddev = torch.sqrt((events ** 2).sum() / num_nonzeros - mean ** 2)
mask = nonzero_ev.float()
events = mask * (events - mean) / (stddev + 1e-8)
return events
def events_to_voxel_grid_pytorch(self, events, num_bins, width, height):
"""
Build a voxel grid with bilinear interpolation in the time domain from a set of events.
:param events: a [N x 4] NumPy array containing one event per row in the form: [timestamp, x, y, polarity]
:param num_bins: number of bins in the temporal axis of the voxel grid
:param width, height: dimensions of the voxel grid
:param device: device to use to perform computations
:return voxel_grid: PyTorch event tensor (on the device specified)
"""
assert (events.shape[1] == 4)
assert (num_bins > 0)
assert (width > 0)
assert (height > 0)
with torch.no_grad():
events_torch = events
voxel_grid = torch.zeros(num_bins, height, width, dtype=torch.float32).flatten()
# normalize the event timestamps so that they lie between 0 and num_bins
last_stamp = events_torch[-1, 0]
first_stamp = events_torch[0, 0]
deltaT = last_stamp - first_stamp
if deltaT == 0:
deltaT = 1.0
events_torch[:, 0] = (num_bins - 1) * (events_torch[:, 0] - first_stamp) / deltaT
ts = events_torch[:, 0]
xs = events_torch[:, 1].long()
ys = events_torch[:, 2].long()
pols = events_torch[:, 3].float()
pols[pols == 0] = -1 # polarity should be +1 / -1
tis = torch.floor(ts)
tis_long = tis.long()
dts = ts - tis
vals_left = pols * (1.0 - dts.float())
vals_right = pols * dts.float()
valid_indices = tis < num_bins
valid_indices &= tis >= 0
voxel_grid.index_add_(
dim=0,
index=xs[valid_indices] + ys[valid_indices] * width + tis_long[valid_indices] * width * height,
source=vals_left[valid_indices])
valid_indices = (tis + 1) < num_bins
valid_indices &= tis >= 0
voxel_grid.index_add_(
dim=0,
index=xs[valid_indices] + ys[valid_indices] * width + (tis_long[valid_indices] + 1) * width * height,
source=vals_right[valid_indices])
voxel_grid = voxel_grid.view(num_bins, height, width)
return voxel_grid
def arch(model_path, n):
device = 'cuda:0'
if n == 0:
from my_org_model.my_model import E2VIDRecurrent, conf
netG = E2VIDRecurrent(conf)
stat_dict = torch.load(model_path, map_location=device)
netG.load_state_dict(stat_dict)
elif n == 1:
from org_e2vid.model import E2VIDRecurrent, conf
raw_model = torch.load(model_path)
netG = E2VIDRecurrent(raw_model['model'])
netG.load_state_dict(raw_model['state_dict'])
elif n == 2:
from spade_e2v import Unet6 as Unet
netG = Unet()
netG.load_state_dict(torch.load(model_path, map_location=device))
elif n == 3:
from cedric_firenet.utils.loading_utils import load_model
netG = load_model(model_path)
else:
print('error')
return netG.eval().cuda()
def create_dataframe(data_dir, models_list):
models = [dir.split('/')[-1].split('.')[0] for dir, n in models_list]
models = [val for i, val in enumerate(models) for _ in (0, 1)]
datasets = [dir.split('/')[-1] for dir, n in data_dir]
for i in range(len(models)):
if i % 2 == 0:
models[i] = models[i] + '_norm'
df_full = {}
for i in ['mse', 'ssim', 'lpips', 'tc']:
exec(f'{i} = pd.DataFrame(index=datasets, columns=models)')
df_full[f'{i}'] = eval(f'{i}')
df_10 = {}
for i in ['mse', 'ssim', 'lpips', 'tc']:
exec(f'{i} = pd.DataFrame(index=datasets, columns=models)')
df_10[f'{i}'] = eval(f'{i}')
return df_full, df_10
def main(arg):
torch.cuda.empty_cache()
rescale = IntensityRescaler()
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
lossfn = LossFn(to_cuda='cuda:0')
ev_rate = 0.35
root_dir = arg.root_dir
models_list = list()
models_list.append([osp.join(root_dir, 'models/E2VID_.pth'), 0])
models_list.append([osp.join(root_dir, 'models/E2VID_lightweight.pth.tar'), 1])
models_list.append([osp.join(root_dir, 'models/SPADE_E2VID.pth'), 2])
models_list.append([osp.join(root_dir, 'models/firenet_1000.pth.tarr'), 3])
data_dir = list()
data_dir.append([osp.join(root_dir, 'dvs_datasets/dynamic_6dof'), 550])
data_dir.append([osp.join(root_dir, 'dvs_datasets/boxes_6dof'), 550])
data_dir.append([osp.join(root_dir, 'dvs_datasets/poster_6dof'), 550])
data_dir.append([osp.join(root_dir, 'dvs_datasets/office_zigzag'), 247])
data_dir.append([osp.join(root_dir, 'dvs_datasets/slider_depth'), 84])
data_dir.append([osp.join(root_dir, 'dvs_datasets/calibration'), 550])
df_full, df_10 = create_dataframe(data_dir, models_list)
vals = range(len(models_list))
vals = [val for val in vals for _ in (0, 1)]
norm = True
data_dict = {}
for i in tqdm.tqdm(vals):
arch_path, arch_n = models_list[i]
netG = arch(arch_path, arch_n)
norm = not norm
for d, frm in tqdm.tqdm(data_dir):
te = testset(d, ev_rate, norm_e=norm, e_abs=False, num_freams=frm)
lpips_loss, tc_loss, tc_gt_loss, ssim_e, mse_e = [], [], [], [], []
stats = None
for f in range(frm):
with torch.no_grad():
x, y = te.getitem(f)
x = x[:, :, :176].cuda()
y = y[None, None, :176].cuda()
if f == 0:
pred = x[:, :3]
pred -= pred.min()
pred /= pred.max()
for ii in range(x.shape[0]):
xx = x[ii][None]
if arch_n in [0, 1, 3]:
pred, stats = netG(xx, stats)
else:
pred, stats = netG(xx, stats, pred)
img1 = y.repeat(1, 3, 1, 1)
if arch_n in [1, 3]:
pred1 = pred.repeat(1, 3, 1, 1)
else:
pred1 = pred
if f > 0:
tc = lossfn.tem_loss(pred0, pred1, img0, img1)
tc_loss.append(tc.item())
tc_gt = lossfn.tem_loss(img0, img1, img0, img1)
tc_gt_loss.append(tc_gt.item())
_, lpips = lossfn.loss(pred1, img1)
lpips_loss.append(lpips.item())
pred0 = pred1.detach()
img0 = img1.detach()
p = rescale(pred1)
y = rescale(img1)
p = p[0].detach().cpu().numpy().mean(0)
y = y[0].detach().cpu().numpy().mean(0)
p = np.uint8(cv2.normalize(p, None, 0, 255, cv2.NORM_MINMAX))
y = np.uint8(cv2.normalize(y, None, 0, 255, cv2.NORM_MINMAX))
y = clahe.apply(y)
p = clahe.apply(p)
ssim_e.append(compare_ssim(p, y, data_range=255, multichannel=False))
mse_e.append(compare_mse(p / 255, y / 255))
cat_img = np.concatenate([p, y], 1)
cat_img = cv2.resize(cat_img, (p.shape[1] * 4, p.shape[0] * 2), interpolation=cv2.INTER_NEAREST)
cv2.imshow(d.split('/')[-1] + '-' + arch_path.split('/')[-1].split('.')[0], cat_img)
if cv2.waitKey(25) & 0xFF == ord('q'):
break
if norm:
col = arch_path.split('/')[-1].split('.')[0] + '_norm'
else:
col = arch_path.split('/')[-1].split('.')[0]
idx = d.split('/')[-1]
df_full['mse']._set_value(idx, col, np.mean(mse_e[:frm]))
df_full['ssim']._set_value(idx, col, np.mean(ssim_e[:frm]))
df_full['lpips']._set_value(idx, col, np.mean(lpips_loss[:frm]))
df_full['tc']._set_value(idx, col, np.mean(tc_loss[:frm]))
df_full['tc']._set_value(idx, 'tc_gt', np.mean(tc_gt_loss[:frm]))
df_10['mse']._set_value(idx, col, np.mean(mse_e[:10]))
df_10['ssim']._set_value(idx, col, np.mean(ssim_e[:10]))
df_10['lpips']._set_value(idx, col, np.mean(lpips_loss[:10]))
df_10['tc']._set_value(idx, col, np.mean(tc_loss[:10]))
df_10['tc']._set_value(idx, 'tc_gt', np.mean(tc_gt_loss[:10]))
n = 'norm' if norm else 'no_norm'
arch_name = arch_path.split('/')[-1][:-4] + '_' + d.split('/')[-1] + '_' + n
data_dict[arch_name] = {'MSE_data': mse_e[:frm],
'SSIM_data': ssim_e[:frm],
'lpips_data': lpips_loss[:frm],
'tc_data': tc_loss[:frm],
'tc_gt_data': tc_gt_loss[:frm]}
print('-' * 30)
print(arch_path.split('/')[-1][:-4], f'Norm: {norm}')
print(d.split('/')[-1])
df_full['mse'].to_csv(osp.join(root_dir, 'res/test_full_mse.csv'))
df_full['ssim'].to_csv(osp.join(root_dir, 'res/test_full_ssim.csv'))
df_full['lpips'].to_csv(osp.join(root_dir, 'res/test_full_lpips.csv'))
df_full['tc'].to_csv(osp.join(root_dir, 'res/test_full_tc.csv'))
df_10['mse'].to_csv(osp.join(root_dir, 'res/test_10_mse.csv'))
df_10['ssim'].to_csv(osp.join(root_dir, 'res/test_10_ssim.csv'))
df_10['lpips'].to_csv(osp.join(root_dir, 'res/test_10_lpips.csv'))
df_10['tc'].to_csv(osp.join(root_dir, 'res/test_10_tc.csv'))
torch.save(data_dict, osp.join(root_dir, '/res/full_data.pth'))
print('finish')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--root_dir', type=str, default='/path/to/dir/ESPADE_E2VID')
args = parser.parse_args()
main(args)