-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
501 lines (394 loc) · 21.1 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
from __future__ import print_function
import model
import data_utils
import inter_utils
import pickle
import time
import os
import torch
import sys
from torch import nn
from torch import optim
from tqdm import tqdm
import argparse
from utils import USE_CUDA
from utils import get_torch_variable_from_np, get_data
from scorer import eval_train_batch, eval_data
from data_utils import output_predict
from data_utils import *
def log(*args, **kwargs):
print(*args,file=sys.stderr, **kwargs)
def seed_everything(seed, cuda=False):
# Set the random seed manually for reproducibility.
np.random.seed(seed)
torch.manual_seed(seed)
if cuda:
torch.cuda.manual_seed_all(seed)
def print_PRF(probs, gold):
predicts = np.argmax(probs.cpu().data.numpy(), axis=1)
gold = gold.cpu().data.numpy()
correct = 0.0
NonullTruth = 0.0
NonullPredict = 0.1
for p, g in zip(predicts, gold):
if g == 0:
continue
if g > 1:
NonullTruth += 1
if p > 1:
NonullPredict += 1
if p == g and g > 1:
correct += 1
P = correct/NonullPredict + 0.0001
R = correct/NonullTruth
F = 2*P*R/(P+R)
log(correct, NonullPredict, NonullTruth)
log(P, R, F)
def make_parser():
parser = argparse.ArgumentParser(description='A Unified Syntax-aware SRL model')
# input
parser.add_argument('--train_data', type=str, help='Train Dataset with CoNLL09 format')
parser.add_argument('--valid_data', type=str, help='Train Dataset with CoNLL09 format')
parser.add_argument('--seed', type=int, default=100, help='the random seed')
# this default value is from PATH LSTM, you can just follow it too
# if you want to do the predicate disambiguation task, you can replace the accuracy with yours.
parser.add_argument('--dev_pred_acc', type=float, default=0.9477,
help='Dev predicate disambiguation accuracy')
parser.add_argument('--test_pred_acc', type=float, default=0.9547,
help='Test predicate disambiguation accuracy')
parser.add_argument('--ood_pred_acc', type=float, default=0.8618,
help='OOD predicate disambiguation accuracy')
# preprocess
parser.add_argument('--preprocess', action='store_true',
help='Preprocess')
parser.add_argument('--tmp_path', type=str, help='temporal path')
parser.add_argument('--model_path', type=str, help='model path')
parser.add_argument('--result_path', type=str, help='result path')
parser.add_argument('--pretrain_embedding', type=str, help='Pretrain embedding like GloVe or word2vec')
parser.add_argument('--pretrain_emb_size', type=int, default=100,
help='size of pretrain word embeddings')
# train
parser.add_argument('--train', action='store_true',
help='Train')
parser.add_argument('--epochs', type=int, default=20,
help='Train epochs')
parser.add_argument('--dropout', type=float, default=0.1,
help='Dropout when training')
parser.add_argument('--dropout_word', type=float, default=0.3,
help='Dropout when training')
parser.add_argument('--dropout_mlp', type=float, default=0.3,
help='Dropout when training')
parser.add_argument('--lr', type=float, default=0.001,
help='Learning rate')
parser.add_argument('--batch_size', type=int, default=64,
help='Batch size in train and eval')
parser.add_argument('--word_emb_size', type=int, default=100,
help='Word embedding size')
parser.add_argument('--pos_emb_size', type=int, default=32,
help='POS tag embedding size')
parser.add_argument('--lemma_emb_size', type=int, default=100,
help='Lemma embedding size')
parser.add_argument('--bilstm_hidden_size', type=int, default=512,
help='Bi-LSTM hidden state size')
parser.add_argument('--bilstm_num_layers', type=int, default=4,
help='Bi-LSTM layer number')
parser.add_argument('--valid_step', type=int, default=1000,
help='Valid step size')
parser.add_argument('--use_deprel', action='store_true',
help='[USE] dependency relation')
parser.add_argument('--deprel_emb_size', type=int, default=64,
help='Dependency relation embedding size')
parser.add_argument('--use_highway', action='store_true',
help='[USE] highway connection')
parser.add_argument('--highway_num_layers', type=int, default=10,
help='Highway layer number')
parser.add_argument('--use_biaffine', action='store_true',
help='[USE] highway connection')
parser.add_argument('--use_self_attn', action='store_true',
help='[USE] self attention')
parser.add_argument('--self_attn_heads', type=int, default=10,
help='Self attention Heads')
parser.add_argument('--use_flag_emb', action='store_true',
help='[USE] predicate flag embedding')
parser.add_argument('--flag_emb_size', type=int, default=16,
help='Predicate flag embedding size')
parser.add_argument('--use_elmo', action='store_true',
help='[USE] ELMo embedding')
parser.add_argument('--elmo_emb_size', type=int, default=300,
help='ELMo embedding size')
parser.add_argument('--elmo_options', type=str,
help='ELMo options file')
parser.add_argument('--elmo_weight', type=str,
help='ELMo weight file')
parser.add_argument('--clip', type=float, default=5,
help='gradient clipping')
# syntactic
parser.add_argument('--use_gcn', action='store_true',
help='[USE] GCN')
parser.add_argument('--use_sa_lstm', action='store_true',
help='[USE] Syntax-aware LSTM')
parser.add_argument('--use_tree_lstm', action='store_true',
help='[USE] tree LSTM')
parser.add_argument('--use_rcnn', action='store_true',
help='[USE] RCNN')
# eval
parser.add_argument('--eval', action='store_true',
help='Eval')
parser.add_argument('--model', type=str, help='Model')
return parser
if __name__ == '__main__':
log('Unified Syntax-aware SRL model')
args = make_parser().parse_args()
# set random seed
seed_everything(args.seed, USE_CUDA)
train_file = args.train_data
dev_file = args.valid_data
# do preprocessing
if args.preprocess:
tmp_path = args.tmp_path
if tmp_path is None:
log('Fatal error: tmp_path cannot be None!')
exit()
log('start preprocessing data...')
start_t = time.time()
# make word/pos/lemma/deprel/argument vocab
log('\n-- making (word/lemma/pos/argument/predicate) vocab --')
vocab_path = tmp_path
log('word:')
make_word_vocab(train_file, vocab_path, unify_pred=False)
log('pos:')
make_pos_vocab(train_file, vocab_path, unify_pred=False)
log('lemma:')
make_lemma_vocab(train_file, vocab_path, unify_pred=False)
log('deprel:')
make_deprel_vocab(train_file, vocab_path, unify_pred=False)
log('argument:')
make_argument_vocab(train_file, dev_file, None, vocab_path, unify_pred=False)
log('predicate:')
make_pred_vocab(train_file, dev_file, None, vocab_path)
deprel_vocab = load_deprel_vocab(os.path.join(tmp_path, 'deprel.vocab'))
# shrink pretrained embeding
log('\n-- shrink pretrained embeding --')
pretrain_file = args.pretrain_embedding
pretrained_emb_size = args.pretrain_emb_size
pretrain_path = tmp_path
shrink_pretrained_embedding(train_file, dev_file, dev_file, pretrain_file, pretrained_emb_size, pretrain_path)
make_dataset_input(train_file, os.path.join(tmp_path, 'train.input'), unify_pred=False,
deprel_vocab=deprel_vocab, pickle_dump_path=os.path.join(tmp_path, 'train.pickle.input'))
make_dataset_input(dev_file, os.path.join(tmp_path, 'dev.input'), unify_pred=False, deprel_vocab=deprel_vocab,
pickle_dump_path=os.path.join(tmp_path, 'dev.pickle.input'))
log('\t data preprocessing finished! consuming {} s'.format(int(time.time() - start_t)))
log('\t start loading data...')
start_t = time.time()
train_input_file = os.path.join(os.path.dirname(__file__), 'temp/train.pickle.input')
dev_input_file = os.path.join(os.path.dirname(__file__), 'temp/dev.pickle.input')
train_data = data_utils.load_dump_data(train_input_file)
dev_data = data_utils.load_dump_data(dev_input_file)
train_dataset = train_data['input_data']
dev_dataset = dev_data['input_data']
word2idx = data_utils.load_dump_data(os.path.join(os.path.dirname(__file__), 'temp/word2idx.bin'))
idx2word = data_utils.load_dump_data(os.path.join(os.path.dirname(__file__), 'temp/idx2word.bin'))
lemma2idx = data_utils.load_dump_data(os.path.join(os.path.dirname(__file__), 'temp/lemma2idx.bin'))
idx2lemma = data_utils.load_dump_data(os.path.join(os.path.dirname(__file__), 'temp/idx2lemma.bin'))
pos2idx = data_utils.load_dump_data(os.path.join(os.path.dirname(__file__), 'temp/pos2idx.bin'))
idx2pos = data_utils.load_dump_data(os.path.join(os.path.dirname(__file__), 'temp/idx2pos.bin'))
deprel2idx = data_utils.load_dump_data(os.path.join(os.path.dirname(__file__), 'temp/deprel2idx.bin'))
idx2deprel = data_utils.load_dump_data(os.path.join(os.path.dirname(__file__), 'temp/idx2deprel.bin'))
pretrain2idx = data_utils.load_dump_data(os.path.join(os.path.dirname(__file__), 'temp/pretrain2idx.bin'))
idx2pretrain = data_utils.load_dump_data(os.path.join(os.path.dirname(__file__), 'temp/idx2pretrain.bin'))
argument2idx = data_utils.load_dump_data(os.path.join(os.path.dirname(__file__), 'temp/argument2idx.bin'))
idx2argument = data_utils.load_dump_data(os.path.join(os.path.dirname(__file__), 'temp/idx2argument.bin'))
pretrain_emb_weight = data_utils.load_dump_data(os.path.join(os.path.dirname(__file__), 'temp/pretrain.emb.bin'))
log('\t data loading finished! consuming {} s'.format(int(time.time() - start_t)))
# result_path = os.path.join(os.path.dirname(__file__),'result/')
result_path = args.result_path
log('\t start building model...')
start_t = time.time()
dev_predicate_sum = dev_data['predicate_sum']
dev_predicate_correct = int(dev_predicate_sum * args.dev_pred_acc)
# hyper parameters
max_epoch = args.epochs
learning_rate = args.lr
batch_size = args.batch_size
dropout = args.dropout
dropout_word = args.dropout_word
dropout_mlp = args.dropout_mlp
use_biaffine = args.use_biaffine
word_embedding_size = args.word_emb_size
pos_embedding_size = args.pos_emb_size
pretrained_embedding_size = args.pretrain_emb_size
lemma_embedding_size = args.lemma_emb_size
use_deprel = args.use_deprel
deprel_embedding_size = args.deprel_emb_size
bilstm_hidden_size = args.bilstm_hidden_size
bilstm_num_layers = args.bilstm_num_layers
show_steps = args.valid_step
use_highway = args.use_highway
highway_layers = args.highway_num_layers
use_flag_embedding = args.use_flag_emb
flag_embedding_size = args.flag_emb_size
use_elmo = args.use_elmo
elmo_embedding_size = args.elmo_emb_size
elmo_options_file = args.elmo_options
elmo_weight_file = args.elmo_weight
elmo = None
use_self_attn = args.use_self_attn
self_attn_head = args.self_attn_heads
use_tree_lstm = args.use_tree_lstm
use_sa_lstm = args.use_sa_lstm
use_gcn = args.use_gcn
use_rcnn = args.use_rcnn
if args.train:
FLAG = 'TRAIN'
if args.eval:
FLAG = 'EVAL'
MODEL_PATH = args.model
if FLAG == 'TRAIN':
model_params = {
"dropout": dropout,
"dropout_word": dropout_word,
"dropout_mlp": dropout_mlp,
"use_biaffine": use_biaffine,
"batch_size": batch_size,
"word_vocab_size": len(word2idx),
"lemma_vocab_size": len(lemma2idx),
"pos_vocab_size": len(pos2idx),
"deprel_vocab_size": len(deprel2idx),
"pretrain_vocab_size": len(pretrain2idx),
"word_emb_size": word_embedding_size,
"lemma_emb_size": lemma_embedding_size,
"pos_emb_size": pos_embedding_size,
"pretrain_emb_size": pretrained_embedding_size,
"pretrain_emb_weight": pretrain_emb_weight,
"bilstm_num_layers": bilstm_num_layers,
"bilstm_hidden_size": bilstm_hidden_size,
"target_vocab_size": len(argument2idx),
"use_highway": use_highway,
"highway_layers": highway_layers,
"use_self_attn": use_self_attn,
"self_attn_head": self_attn_head,
"use_deprel": use_deprel,
"deprel_emb_size": deprel_embedding_size,
"deprel2idx": deprel2idx,
"use_flag_embedding": use_flag_embedding,
"flag_embedding_size": flag_embedding_size,
'use_elmo': use_elmo,
"elmo_embedding_size": elmo_embedding_size,
"elmo_options_file": elmo_options_file,
"elmo_weight_file": elmo_weight_file,
"use_tree_lstm": use_tree_lstm,
"use_gcn": use_gcn,
"use_sa_lstm": use_sa_lstm,
"use_rcnn": use_rcnn
}
# build model
srl_model = model.End2EndModel(model_params)
if USE_CUDA:
srl_model.cuda()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(srl_model.parameters(), lr=learning_rate)
log(srl_model)
log('\t model build finished! consuming {} s'.format(int(time.time() - start_t)))
log('\nStart training...')
dev_best_score = None
test_best_score = None
test_ood_best_score = None
for epoch in range(max_epoch):
epoch_start = time.time()
for batch_i, train_input_data in enumerate(inter_utils.get_batch(train_dataset, batch_size, word2idx,
lemma2idx, pos2idx, pretrain2idx,
deprel2idx, argument2idx, idx2word, shuffle=True)):
target_argument = train_input_data['argument']
flat_argument = train_input_data['flat_argument']
gold_pos = train_input_data['gold_pos']
gold_PI = train_input_data['predicates_flag']
gold_deprel = train_input_data['sep_dep_rel']
gold_link = train_input_data['sep_dep_link']
target_batch_variable = get_torch_variable_from_np(flat_argument)
gold_pos_batch_variable = get_torch_variable_from_np(gold_pos)
gold_PI_batch_variable = get_torch_variable_from_np(gold_PI)
gold_deprel_batch_variable = get_torch_variable_from_np(gold_deprel)
gold_link_batch_variable = get_torch_variable_from_np(gold_link)
bs = train_input_data['batch_size']
sl = train_input_data['seq_len']
out, out_pos, out_PI, out_deprel, out_link = srl_model(train_input_data, elmo)
loss = criterion(out, target_batch_variable)
loss_pos = criterion(out_pos, gold_pos_batch_variable.view(-1))
loss_PI = criterion(out_PI, gold_PI_batch_variable.view(-1))
loss_deprel = criterion(out_deprel, gold_deprel_batch_variable.view(-1))
loss_link = criterion(out_link, gold_link_batch_variable.view(-1))
loss = loss + loss_pos + loss_PI + loss_deprel + loss_link
if batch_i%50 == 0:
log(batch_i, loss)
#log("POS:")
#print_PRF(out_pos, gold_pos_batch_variable.view(-1))
#print_PRF(out_PI, gold_PI_batch_variable.view(-1))
#print_PRF(out_deprel, gold_deprel_batch_variable.view(-1))
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch_i > 0 and batch_i % show_steps == 0:
_, pred = torch.max(out, 1)
pred = get_data(pred)
# pred = pred.reshape([bs, sl])
log('\n')
log('*' * 80)
eval_train_batch(epoch, batch_i, loss.data[0], flat_argument, pred, argument2idx)
log('dev:')
score, dev_output = eval_data(srl_model, elmo, dev_dataset, batch_size, word2idx, lemma2idx,
pos2idx, pretrain2idx, deprel2idx, argument2idx, idx2argument, idx2word,
False,
dev_predicate_correct, dev_predicate_sum)
if dev_best_score is None or score[2] > dev_best_score[2]:
dev_best_score = score
output_predict(
os.path.join(result_path, 'dev_argument_{:.2f}.pred'.format(dev_best_score[2] * 100)),
dev_output)
# torch.save(srl_model, os.path.join(os.path.dirname(__file__),'model/best_{:.2f}.pkl'.format(dev_best_score[2]*100)))
log('\tdev best P:{:.2f} R:{:.2f} F1:{:.2f} NP:{:.2f} NR:{:.2f} NF1:{:.2f}'.format(
dev_best_score[0] * 100, dev_best_score[1] * 100,
dev_best_score[2] * 100, dev_best_score[3] * 100,
dev_best_score[4] * 100, dev_best_score[5] * 100))
"""
log('test:')
score, test_output = eval_data(srl_model, elmo, test_dataset, batch_size, word2idx, lemma2idx,
pos2idx, pretrain2idx, deprel2idx, argument2idx, idx2argument, False,
test_predicate_correct, test_predicate_sum)
if test_best_score is None or score[2] > test_best_score[2]:
test_best_score = score
output_predict(
os.path.join(result_path, 'test_argument_{:.2f}.pred'.format(test_best_score[2] * 100)),
test_output)
torch.save(srl_model, os.path.join(os.path.dirname(__file__),
'model/best_{:.2f}.pkl'.format(test_best_score[2] * 100)))
log('\ttest best P:{:.2f} R:{:.2f} F1:{:.2f} NP:{:.2f} NR:{:.2f} NF1:{:.2f}'.format(
test_best_score[0] * 100, test_best_score[1] * 100,
test_best_score[2] * 100, test_best_score[3] * 100,
test_best_score[4] * 100, test_best_score[5] * 100))
log(
'\repoch {} batch {} batch consume:{} s'.format(epoch, batch_i, int(time.time() - epoch_start)), end="")
epoch_start = time.time()
"""
else:
srl_model = torch.load(MODEL_PATH)
srl_model.eval()
log('test not available')
"""
score, test_output = eval_data(srl_model, elmo, test_dataset, batch_size, word2idx, lemma2idx, pos2idx,
pretrain2idx, deprel2idx, argument2idx, idx2argument, False,
test_predicate_correct, test_predicate_sum)
log('\ttest P:{:.2f} R:{:.2f} F1:{:.2f} NP:{:.2f} NR:{:.2f} NF1:{:.2f}'.format(score[0] * 100, score[1] * 100,
score[2] * 100, score[3] * 100,
score[4] * 100,
score[5] * 100))
if test_ood_file is not None:
log('ood:')
score, ood_output = eval_data(srl_model, elmo, test_ood_dataset, batch_size, word2idx, lemma2idx, pos2idx,
pretrain2idx, deprel2idx, argument2idx, idx2argument, False,
test_ood_predicate_correct, test_ood_predicate_sum)
output_predict(os.path.join(result_path, 'ood_argument_{:.2f}.pred'.format(score[2] * 100)), ood_output)
log(
'\tood P:{:.2f} R:{:.2f} F1:{:.2f} NP:{:.2f} NR:{:.2f} NF1:{:.2f}'.format(score[0] * 100, score[1] * 100,
score[2] * 100, score[3] * 100,
score[4] * 100, score[5] * 100))
"""