-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_volcano.py
661 lines (591 loc) · 29.4 KB
/
train_volcano.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
# from utils.llava_flash_attn import replace_llama_attn_with_flash_attn
import os, random
from tkinter import FALSE
from typing import Any, Optional, Dict, List
from dataclasses import dataclass, field
import torch
from lightning.pytorch import LightningModule, seed_everything
from transformers import Trainer, TrainerCallback
from vocot_trainer import VoCoTTrainer
from transformers.trainer_callback import TrainerControl, TrainerState
import transformers
from torch.utils.data import ConcatDataset
from typing import Optional, Dict
from dataclasses import dataclass, field
from locals.datasets import SFT_DataCollator
import logging, re, shutil
from pathlib import Path
from lightning.pytorch import seed_everything
from torchvision import transforms
from constants import *
from transformers import CLIPImageProcessor
from lightning.pytorch.callbacks import BasePredictionWriter
from locals.datasets.preprocessor import VoCoT_InputProcessor
import argparse
from omegaconf import OmegaConf
from utils.util import instantiate_from_config, print_trainable_params, safe_save_model_for_hf_trainer
import torch.distributed as dist
import pathlib
from PIL import Image
from model.language_model.volcano_llama import VolCanoLlamaForCausalLM, VolCanoConfig
from model.language_model.volcano_mistral import VolCanoMistralForCausalLM, VolCanoMistralConfig
from transformers import LlamaTokenizer, AutoTokenizer
import json
from peft import (
LoraConfig,
get_peft_model,
TaskType
)
local_rank = None
def rank0_print(*args):
if local_rank == 0:
print(*args)
class PredWriter(BasePredictionWriter):
def write_on_epoch_end(
self,
trainer: Trainer,
pl_module: LightningModule,
predictions: Any, # complex variables is ok
batch_indices: list[list[list[int]]],
) -> None:
output_folder = pl_module.output_folder
torch.save(predictions, os.path.join(output_folder, f"predictions-{trainer.local_rank}.pt"))
rank0_print(f'rank {trainer.local_rank} predictions saved')
def default_gpus():
return [0,1,2,3]
@dataclass
class ModelArguments:
model_type: Optional[str] = field(default="multimodal_encoder")
model_path: Optional[str] = field(default="multimodal_encoder")
flash_attn: Optional[bool] = field(default=False)
snr_loss: Optional[bool] = field(default=True)
use_mistral: Optional[bool] = field(default=False)
model_save_name: Optional[str] = field(default="model_{epoch}-{step}")
stage1_weight: Optional[str] = field(default=None)
stage2_weight: Optional[str] = field(default=None)
sd_base_name: Optional[str] = field(default="stabilityai/stable-diffusion-2-1-base")
vision_encoder: Optional[str] = field(default="/mnt/bn/yangmin-priv/luoruipu/weight_pretrained/eva_vit_g.pth")
vision_encoder_path: Optional[str] = field(default=None)
front_projector_type: Optional[str] = field(default="q_former")
front_projector: Optional[str] = field(default="/mnt/bn/yangmin-priv/luoruipu/weight_pretrained/blip2_pretrained_flant5xxl.pth")
num_query_token: Optional[int] = field(default=32)
front_projector_type: Optional[str] = field(default="q_former")
vision_generator_type: Optional[str] = field(default='SD')
behind_projector: Optional[str] = field(default='linear')
vision_generator_cond_channels: Optional[int] = field(default=4)
vision_generator: Optional[str] = field(default = "/mnt/bn/luoruipu-disk/weight_pretrained/stable-diffusion-2-1-base/")
behind_projector: Optional[bool] = field(default = True)
t2i_mapping_hidden_size: Optional[int] = field(default=1024)
compute_diffusion_loss: Optional[bool] = field(default=False)
avoid_generator: Optional[bool] = field(default=False)
tokenizer_model_max_length: Optional[int] = field(default=None)
reinit_embedding_size: Optional[int] = field(default=None)
num_image_token: Optional[int] = field(default=64)
extend_loc_vocabulary: Optional[bool] = field(default=False)
mm_vision_select_layer: Optional[int] = field(default=-2)
@dataclass
class DataArguments:
train_data_path: str = field(default=None, metadata={"help": "Path to the training data."})
val_data_path: str = field(default=None, metadata={"help": "Path to the validation data."})
test_data_path: str = field(default=None, metadata={"help": "Path to the test data."})
data_config_path: str = field(default=None, metadata={"help": "Path to the data config file."})
expand_to_square: bool = field(default=False, metadata={"help": "Whether to expand the image into square before resize"})
project_name: str = field(default='edit_minigpt5')
@dataclass
class TrainingArguments(transformers.Seq2SeqTrainingArguments):
lora_enable: bool = field(default = True)
lora_save_strategy: str = field(default = None)
stage1_ckpt: str = field(default=None)
loss_weight_decay: str = field(default='none')
regression_weight: Optional[float] = field(default=1.0)
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
freeze_backbone: bool = field(default=False)
freeze_vision_generator: bool = field(default=True)
output_dir: str = field(default=WEIGHTFOLDER)
num_train_epochs:int = field(default=2)
per_device_train_batch_size:int = field(default=2)
per_device_eval_batch_size:int = field(default=2)
real_batch_size:int = field(default=48)
save_total_limit:int = field(default=1)
learning_rate:float = field(default=2e-5)
warmup_ratio:float = field(default=0.03)
# warmup_steps:int = field(default=1000)
adam_epsilon:float = field(default=1e-8)
deepspeed: str = field(default=None)
stage: int = field(default=2)
num_workers:int = field(default=4)
activate_behind_fc: bool = field(default=False)
activate_behind_projector: bool = field(default=True)
activate_behind_query: bool = field(default=False)
model_max_length: int = field(default=512)
gpus: List[int] = field(default_factory=default_gpus)
resume: Optional[str] = field(default=None)
is_training: Optional[bool] = field(default=False)
test_weight: Optional[str] = field(default=None)
lora_weight: Optional[str] = field(default=None)
skip_vision_encoder_load: Optional[bool] = field(default=False)
bits: int = field(
default=16,
metadata={"help": "How many bits to use."}
)
def maybe_zero_3(param, ignore_status=False, name=None):
from deepspeed import zero
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
if hasattr(param, "ds_id"):
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
if not ignore_status:
logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}")
with zero.GatheredParameters([param]):
param = param.data.detach().cpu().clone()
else:
param = param.detach().cpu().clone()
return param
# Borrowed from peft.utils.get_peft_model_state_dict
def get_peft_state_maybe_zero_3(named_params, bias):
if bias == "none":
to_return = {k: t for k, t in named_params if "lora_" in k}
elif bias == "all":
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
elif bias == "lora_only":
to_return = {}
maybe_lora_bias = {}
lora_bias_names = set()
for k, t in named_params:
if "lora_" in k:
to_return[k] = t
bias_name = k.split("lora_")[0] + "bias"
lora_bias_names.add(bias_name)
elif "bias" in k:
maybe_lora_bias[k] = t
for k, t in maybe_lora_bias:
if bias_name in lora_bias_names:
to_return[bias_name] = t
else:
raise NotImplementedError
to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()}
return to_return
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
to_return = {k: t for k, t in named_params if "lora_" not in k}
if require_grad_only:
to_return = {k: t for k, t in to_return.items() if t.requires_grad}
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
return to_return
# def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
# to_return = {k: t for k, t in named_params if "lora_" not in k}
# if require_grad_only:
# to_return = {k: t for k, t in to_return.items() if t.requires_grad}
# to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
# return to_return
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)}
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
return to_return
def find_all_linear_names(model):
cls = torch.nn.Linear
lora_module_names = set()
multimodal_keywords = ['mm_projector', 'vision_tower', 'vision_resampler']
for name, module in model.named_modules():
if any(mm_keyword in name for mm_keyword in multimodal_keywords):
continue
if isinstance(module, cls):
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if 'lm_head' in lora_module_names: # needed for 16-bit
lora_module_names.remove('lm_head')
return list(lora_module_names)
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer,
output_dir: str):
"""Collects the state dict and dump to disk."""
if getattr(trainer.args, "tune_mm_mlp_adapter", False):
# Only save Adapter
keys_to_match = ['mm_projector']
if getattr(trainer.args, "use_im_start_end", False):
keys_to_match.extend(['embed_tokens', 'embed_in'])
weight_to_save = get_mm_adapter_state_maybe_zero_3(trainer.model.named_parameters(), keys_to_match)
trainer.model.config.save_pretrained(output_dir)
current_folder = output_dir.split('/')[-1]
parent_folder = os.path.dirname(output_dir)
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1:
if current_folder.startswith('checkpoint-'):
mm_projector_folder = os.path.join(parent_folder, "mm_projector")
os.makedirs(mm_projector_folder, exist_ok=True)
torch.save(weight_to_save, os.path.join(mm_projector_folder, f'{current_folder}.bin'))
else:
torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin'))
return
if trainer.deepspeed:
torch.cuda.synchronize()
trainer.save_model(output_dir)
return
state_dict = trainer.model.state_dict()
if trainer.args.should_save:
cpu_state_dict = {
key: value.cpu()
for key, value in state_dict.items()
}
del state_dict
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
class LLMCallback(TrainerCallback):
"A callback that output infomation and do some operators"
def output_log(self, args: TrainingArguments, state: TrainerState):
def loss_log(data):
try:
loss_ = data["loss"]
learning_rate_ = data["learning_rate"]
step_ = data["step"]
loss_log_str = f"step: {step_:<8} || learning_rate: {learning_rate_:<25} || loss: {loss_:<10}"
except:
loss_log_str = json.dumps(data)
return loss_log_str
output_file = os.path.join(args.output_dir, "trainer.log")
log_history = map(loss_log, state.log_history)
with open(output_file, "w") as f:
for line in log_history:
f.write(line + "\n")
def on_step_end(
self,
args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
**kwargs,
):
# TODO: support deepspeed zero3 save extra weights not all llm weights
if args.lora_enable and args.lora_save_strategy == 'steps' and state.global_step%args.save_steps == 0:
self.output_log(args, state)
model_ = kwargs["model"]
save_number = str(state.global_step)
state_dict = get_peft_state_maybe_zero_3(
model_.named_parameters(), 'none'
)
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(
model_.named_parameters()
)
if args.local_rank == 0 or args.local_rank == -1:
output_dir = os.path.join(args.output_dir,f'checkpoint-{save_number}')
os.makedirs(output_dir, exist_ok=True)
# model_.config.save_pretrained(output_dir)
model_.save_pretrained(output_dir, state_dict=state_dict)
torch.save(non_lora_state_dict, os.path.join(output_dir, 'non_lora_trainables.bin'))
kwargs["tokenizer"].save_pretrained(output_dir)
elif args.save_strategy == 'steps' and (state.global_step - 1)%args.save_steps == 0:
# no need to manual saving
ordering_and_checkpoint_path = []
checkpoint_prefix = 'checkpoint'
glob_checkpoints = [str(x) for x in Path(args.output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)]
for path in glob_checkpoints:
regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
if regex_match is not None and regex_match.groups() is not None:
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
checkpoints_sorted = sorted(ordering_and_checkpoint_path)
# checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
if len(checkpoints_sorted) > 1:
# there are more than 2 checkpoints, delete the one before the latest
checkpoint_to_delete = os.path.join(checkpoints_sorted[-2][1], 'global_step{}'.format(checkpoints_sorted[-2][0]))
rank0_print('deleting checkpoint_to_delete for saving memory')
shutil.rmtree(checkpoint_to_delete, ignore_errors=True)
elif args.save_strategy == 'no' and args.lora_save_strategy == 'steps' and state.global_step%args.save_steps == 0:
# if not using huggingface save, perform manual saving
self.output_log(args, state)
model_ = kwargs["model"]
save_number = str(state.global_step)
state_dict_to_store = get_peft_state_non_lora_maybe_zero_3(model_.named_parameters())
if args.local_rank == 0 or args.local_rank == -1:
output_dir = os.path.join(args.output_dir,f'checkpoint-{save_number}')
os.makedirs(output_dir, exist_ok=True)
# model_.config.save_pretrained(output_dir)
torch.save(state_dict_to_store, os.path.join(output_dir, 'pytorch_model.bin'))
kwargs["tokenizer"].save_pretrained(output_dir)
# perform the weight
if args.loss_weight_decay == 'linear':
max_steps = state.max_steps
global_step = state.global_step
init_weight = args.regression_weight
weight_per_step = (init_weight - 1) / max_steps
current_weight = init_weight - (weight_per_step * global_step)
model_ = kwargs["model"]
model_.regression_weight = 2 * current_weight / (1 + current_weight)
elif args.loss_weight_decay == 'none':
pass
else:
raise NotImplementedError
return super().on_step_end(args, state, control, **kwargs)
def change_trainable_params(training_args, model_args, model):
if training_args.stage == 1:
raise NotImplementedError
elif training_args.stage == 2:
if model_args.vision_generator_type == 'P2P_SD' and not training_args.freeze_vision_generator:
for k,v in model.named_parameters():
if 'unet' in k:
v.requires_grad=True
for k,v in model.named_parameters():
if 'behind_projector' in k and 't2i_decoder_prompt' not in k and training_args.activate_behind_projector:
v.requires_grad = True
if training_args.activate_behind_query:
if 'behind_projector.t2i_decoder_prompt' in k:
v.requires_grad = True
if training_args.activate_behind_fc:
if 'model.fc' in k:
v.requires_grad = True
elif 'lora' in k:
v.requires_grad = True
class CLIPTransform:
def __init__(self, transform):
self.transform = transform
self.image_mean = transform.image_mean
def __call__(self, image):
width, height = image.size
if width == 1 and height == 1:
# (1,1) image
image = image.resize((16, 16))
try:
rep = torch.tensor(self.transform(image)['pixel_values'][0])
except:
rep = torch.tensor(self.transform(Image.new(image.mode, (32, 32), (0,0,0)))['pixel_values'][0])
return rep
def llava_projector_mapping(ckpt):
key_pairs = []
new_dict = {}
for k,v in ckpt.items():
if k.startswith('model.mm_projector'):
new_k = k.replace('model.mm_projector', 'front_mm_projector')
else:
new_k = 'front_mm_projector.'+k
key_pairs.append([k, new_k])
for pair in key_pairs:
k, new_k = pair
new_dict[new_k] = ckpt[k]
del(ckpt[k])
return new_dict
def main(args):
# replace_llama_attn_with_flash_attn()
global local_rank
os.environ['NCCL_DEBUG']=''
seed_everything(42)
torch.backends.cuda.matmul.allow_tf32 = True
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_yaml_file(args.conf,allow_extra_keys=True)
local_rank = training_args.local_rank
training_args.learning_rate = float(training_args.learning_rate) # fix the learning rate type
os.environ['WANDB_PROJECT'] = data_args.project_name
if isinstance(training_args.gpus, str):
training_args.gpus = [int(x) for x in training_args.gpus.split(',')]
# distinguish mistral and llama backbone
if model_args.use_mistral:
print('based on Mistral model')
config_class = VolCanoMistralConfig
model_class = VolCanoMistralForCausalLM
tokenizer_class = AutoTokenizer
else:
print('based on Llama model')
config_class = VolCanoConfig
model_class = VolCanoLlamaForCausalLM
tokenizer_class = LlamaTokenizer
# model construction
llama_config = config_class.from_pretrained(model_args.model_path)
if model_args.flash_attn:
print('using flash attn!')
llama_config._flash_attn_2_enabled = True
llama_config._attn_implementation = 'flash_attention_2'
else:
print('run without flash attn')
llama_config.skip_load_vision_encoder = training_args.skip_vision_encoder_load
llama_config.num_image_token = model_args.num_image_token
if training_args.bf16:
current_dtype = torch.bfloat16
else:
current_dtype = torch.float16
model = model_class.from_pretrained(model_args.model_path, config=llama_config, torch_dtype=current_dtype)
if model_args.use_mistral:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_path,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side='right',
use_fast=True,
trust_remote_code=True
)
else:
tokenizer = tokenizer_class.from_pretrained(model_args.model_path, use_fast=False)
model.tokenizer = tokenizer
model.config.vision_encoder = model_args.vision_encoder
model.config.vision_encoder_path = model_args.vision_encoder_path
model.config.front_projector_type = model_args.front_projector_type
model.config.front_projector = model_args.front_projector
model.config.num_query_token = model_args.num_query_token
model.config.vision_generator = model_args.vision_generator
model.config.vision_generator_type = model_args.vision_generator_type
model.config.behind_projector = model_args.behind_projector
model.config.t2i_mapping_hidden_size = model_args.t2i_mapping_hidden_size
model.config.behind_projector = model_args.behind_projector
model.config.snr_loss = True
model.config.compute_diffusion_loss = model_args.compute_diffusion_loss
model.config.avoid_generator = model_args.avoid_generator
model.config.tokenizer_model_max_length = model_args.tokenizer_model_max_length
model.config.num_image_token = model_args.num_image_token
model.config.mm_vision_select_layer = model_args.mm_vision_select_layer
if not hasattr(model, 'vision_encoder'):
model.init_vision_model()
model.regression_weight = 2 * training_args.regression_weight / (1 + training_args.regression_weight)
model.init_tokenizer_grd(tokenizer)
if model_args.use_mistral:
tokenizer.pad_token = tokenizer.unk_token
if training_args.stage1_ckpt:
print('loading the stage 1 checkpoint!')
stage1_ckpt = torch.load(training_args.stage1_ckpt, map_location='cpu')
stage1_ckpt = llava_projector_mapping(stage1_ckpt)
base_dir = os.path.dirname(training_args.stage1_ckpt)
if os.path.exists(os.path.join(base_dir, 'tokenizer_config.json')):
tokenizer = tokenizer_class.from_pretrained(base_dir, use_fast=False)
model.tokenizer = tokenizer
model.resize_token_embeddings(len(tokenizer))
model.load_state_dict(stage1_ckpt, strict=False)
if model_args.extend_loc_vocabulary:
model.init_tokenizer_loc(tokenizer)
if model_args.reinit_embedding_size is not None:
model.reinit_partial_embeddings(model_args.reinit_embedding_size)
# tokenizer.pad_token = tokenizer.eos_token
print('length tokenizer',len(tokenizer))
if training_args.freeze_backbone:
model.model.requires_grad_(False)
if training_args.lora_enable:
print("Using LoRA")
# lora_target_modules = [f"model.layers.{i}.self_attn.q_proj" for i in range(32)] + [f"model.layers.{i}.self_attn.v_proj" for i in range(32)] + [f"model.layers.{i}.self_attn.k_proj" for i in range(32)]
avoid_keys = ['embed_tokens', 'lm_head', 'front_mm_projector', 'behind_projector', 'vision_encoder', 'llama_proj', 'vision_generator']
lora_target_modules = []
for k,v in model.named_modules():
if any(mm_keyword in k for mm_keyword in avoid_keys):
continue
elif isinstance(v, torch.nn.Linear):
lora_target_modules.append(k)
# lora_target_modules = [k for k,v in model.named_modules if isinstance(v, torch.nn.Linear)]
# if model_args.vision_generator_type == 'P2P_SD' and training_args.stage == 2:
# lora_target_modules = lora_target_modules + ['unet']
lora_r = 16
lora_alpha = 32
lora_dropout = 0.05
lora_config = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
target_modules=lora_target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type=TaskType.CAUSAL_LM,
modules_to_save=['lm_head','embed_tokens', 'front_mm_projector', 'behind_projector']
)
if training_args.bits == 16:
if training_args.bf16:
model.to(torch.bfloat16)
if training_args.fp16:
model.to(torch.float16)
model = get_peft_model(model, lora_config)
model.base_model.model.model.embed_tokens.original_module.weight.requires_grad = False
model.base_model.model.lm_head.original_module.weight.requires_grad = False
else:
# freeze the vision encoder
for param in model.vision_encoder.parameters():
param.requires_grad = False
# activate the input embeddings and lm head
model.get_input_embeddings().weight.requires_grad = True
sd_tokenizer = None
# data create
output_vis_processor = transforms.Compose(
[
transforms.Resize(1024, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(1024),
# transforms.RandomHorizontalFlip(), # comment here
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
input_vis_processor = transforms.Compose(
[
transforms.Resize(448, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(448),
# transforms.RandomHorizontalFlip(), comment here
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
]
)
if hasattr(model.vision_encoder, 'image_processor'):
input_vis_processor = model.vision_encoder.image_processor
input_vis_processor = CLIPTransform(input_vis_processor)
preprocessor = VoCoT_InputProcessor(tokenizer=tokenizer, input_image_processor=input_vis_processor, use_mistral=model_args.use_mistral,
output_image_processor=output_vis_processor, merge_in_out_image=True, expand2square=data_args.expand_to_square)
data_collator = SFT_DataCollator(tokenizer=tokenizer, sd_tokenizer=None)
# make the dataloader here!
config = OmegaConf.load(data_args.data_config_path)
ds_helper = instantiate_from_config(config['datasets'])
ds_helper.wrap = True
ds_helper.preprocessor = preprocessor
ds_helper.setup()
for k,v in ds_helper.datasets.items():
if hasattr(v.data, 'expand2square') and v.data.expand2square != data_args.expand_to_square:
print('error with {} dataset'.format(k))
v.data.expand2square = data_args.expand_to_square
concate_ds = ConcatDataset([v for v in ds_helper.datasets.values()])
if local_rank == 0:
print('test sample')
print(concate_ds[random.randint(0, len(concate_ds))])
# from torch.utils.data import DataLoader
# sampler_train = torch.utils.data.DistributedSampler(
# concate_ds, num_replicas=dist.get_world_size(), rank=dist.get_rank(), shuffle=True
# )
# dl = DataLoader(concate_ds, batch_size=training_args.per_device_train_batch_size, sampler=sampler_train)
change_trainable_params(training_args, model_args, model)
callback_class = LLMCallback
trainer = VoCoTTrainer(model = model,
tokenizer = tokenizer,
args = training_args,
callbacks=[callback_class],
train_dataset=concate_ds,
data_collator=data_collator,
eval_dataset=None)
# trainer._signature_columns = ['input_images','output_images']
print_trainable_params(model)
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
# Lora model is not support this resume branch, make sure your lora out_dir is empty.
rank0_print('resume')
trainer.train(resume_from_checkpoint=True)
else:
trainer.train()
trainer.save_state()
model.config.use_cache = True
# delelet the last checkpoint running states
if training_args.save_strategy == 'steps':
# no need to manual saving
ordering_and_checkpoint_path = []
checkpoint_prefix = 'checkpoint'
glob_checkpoints = [str(x) for x in Path(training_args.output_dir).glob(f"{checkpoint_prefix}-*") if os.path.isdir(x)]
for path in glob_checkpoints:
regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
if regex_match is not None and regex_match.groups() is not None:
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
checkpoints_sorted = sorted(ordering_and_checkpoint_path)
# checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
if len(checkpoints_sorted) > 1:
# there are more than 2 checkpoints, delete the one before the latest
checkpoint_to_delete = os.path.join(checkpoints_sorted[-1][1], 'global_step{}'.format(checkpoints_sorted[-1][0]))
rank0_print('deleting checkpoint_to_delete for saving memory')
shutil.rmtree(checkpoint_to_delete, ignore_errors=True)
if training_args.lora_enable:
state_dict = get_peft_state_maybe_zero_3(
model.named_parameters(), 'none'
)
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(
model.named_parameters()
)
if training_args.local_rank == 0 or training_args.local_rank == -1:
model.config.save_pretrained(training_args.output_dir)
model.save_pretrained(training_args.output_dir, state_dict=state_dict)
torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin'))
tokenizer.save_pretrained(training_args.output_dir)
else:
safe_save_model_for_hf_trainer(trainer=trainer,
output_dir=training_args.output_dir)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--conf", type=str,
default="valley/configs/experiment/valley_debug.yaml")
args = parser.parse_args()
main(args)