-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnumber_theory_tonelli_shanks_cornacchia.py
40 lines (35 loc) · 1.38 KB
/
number_theory_tonelli_shanks_cornacchia.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
'''
Tonelli-Shanks algorithm
Given an integer n and a prime number p, find r such that r^2 = n (mod p)
Cornacchia algorithm
Solve for nonnegative integers (x, y) such that x^2 + dy^2 = p where p is prime
For non-prime integers, don't use Tonelli-Shanks :)
'''
def tonelli_shanks(n, p):
if pow(n, (p-1)//2, p) == p-1: return None # n is a quadratic non-residue
q = p-1; s=0
while q%2 == 0: q //= 2; s += 1
for z in range(2, p):
if p-1 == pow(z, (p-1)//2, p): break # z is a quadratic non-residue
c = pow(z, q, p); r = pow(n, (q+1)//2, p); t = pow(n, q, p); m = s
while (t-1)%p:
u = t*t%p; i = -1
for i in range(1, m):
if u%p == 1: break
u = u*u%p
if i == -1: return None
b = pow(c, 1<<(m-i-1), p); r = r*b%p; c = b*b%p; t = t*c%p; m = i
return r
def cornacchia(d, p):
r = tonelli_shanks(-d, p)
if r == None: return None
z = [p, min(r, p-r)]
while z[-1]**2 >= p: z.append(z[-2]%z[-1])
x, y = z[-1], round(((p-z[-1]**2)/d)**0.5)
if x*x + d*y*y == p: return x, y
if __name__ == '__main__':
print(tonelli_shanks(2, 7)) # 4^2 = 2 (mod 7)
print(tonelli_shanks(5, 13)) # no solution to x^2 = 5 (mod 13)
print(cornacchia(1, 73)) # 8^2 + 1*3^2 = 73
print(cornacchia(47, 13907)) # 18^2 + 47*17^2 = 13907
print(cornacchia(19, 73)) # no solution to x^2 + 19y^2 = 73