-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsqrt_decomposition.py
37 lines (36 loc) · 1.4 KB
/
sqrt_decomposition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from math import ceil
class Sqrt:
def __init__(self, arr):
self.a = arr
self.b = [0]*ceil(len(arr)**0.5)
self.n = len(self.b)
for i in range(len(arr)): self.b[i//self.n] += arr[i]
def update(self, x, v):
self.b[x//self.n] -= self.a[x]; self.a[x] = v; self.b[x//self.n] += v
def query(self, l, r):
q = 0
for i in range(r//self.n): q += self.b[i]
for i in range(r//self.n*self.n, r): q += self.a[i]
for i in range(l//self.n): q -= self.b[i]
for i in range(l//self.n*self.n, l): q -= self.a[i]
return q
if __name__ == '__main__':
from random import randint
arr = [0]*11
arr2 = arr.copy()
sq = Sqrt(arr)
for i, v in [(1, 10), (5, 2), (3, 4), (4, -1), (7, 3), (10, 12), (1, 3), (2, 2), (3, -7)]:
arr2[i] = v
print('Current array:\t', arr2)
sq.update(i, v)
print('Sqrt array:\t', [sq.query(i, i+1) for i in range(11)])
for _ in range(5):
a = randint(0, 11); b = a+randint(0, 11-a)
assert (l:=sum(arr2[a:b])) == (r:=sq.query(a, b)), (a, b, l, r)
print()
for _ in range(300):
a = randint(0, 11); b = a+randint(0, 11-a)
v = randint(-69420, 42069)
sq.update(i, v); arr2[i] = v
assert sq.a == arr2 == (c:=[sq.query(i, i+1) for i in range(11)]), (sq.a, arr2, c)
print('All done!')