-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathremove_edge.py
46 lines (34 loc) · 1.35 KB
/
remove_edge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import json
import numpy as np
import torch
import csv
kg = 'datasets/data_preprocessed/teamplayssport/original_graph.txt'
removed_edges1 = 'datasets/data_preprocessed/teamplayssport/sparsity_removed_edge1'
removed_edges2 = 'datasets/data_preprocessed/teamplayssport/sparsity_removed_edge2'
removed_edges3 = 'datasets/data_preprocessed/teamplayssport/sparsity_removed_edge3'
removed_edges4 = 'datasets/data_preprocessed/teamplayssport/sparsity_removed_edge4'
removed_edges5 = 'datasets/data_preprocessed/teamplayssport/sparsity_removed_edge5'
removed_kg_file = 'datasets/data_preprocessed/teamplayssport/graph.txt'
f = open(removed_edges1)
remove_edges1 = f.readlines()
f = open(removed_edges2)
remove_edges2 = f.readlines()
f = open(removed_edges3)
remove_edges3 = f.readlines()
f = open(removed_edges4)
remove_edges4 = f.readlines()
f = open(removed_edges5)
remove_edges5 = f.readlines()
remove_edges = remove_edges1 \
# + remove_edges2 + remove_edges3 + remove_edges4 + remove_edges5
remove_edges = [edge.strip().split() for edge in remove_edges]
removed_kg = []
with open(kg) as triple_file_raw:
triple_file = csv.reader(triple_file_raw, delimiter='\t')
for line in triple_file:
e1, r, e2 = line
if [e1, r, e2] not in remove_edges:
removed_kg.append(line)
with open(removed_kg_file, 'w') as f:
for line in removed_kg:
f.write('\t'.join(line) + '\n')