We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
prompter = Prompter(prompt_template) tokenizer = AutoTokenizer.from_pretrained(base_model) if device == "cuda": model = AutoModelForCausalLM.from_pretrained( base_model, load_in_8bit=load_8bit, torch_dtype=torch.float16, #device_map="auto", device_map={"": 0}, #offload_folder="offload_folder" ) model = PeftModel.from_pretrained( model, lora_weights, torch_dtype=torch.float16, ) elif device == "mps": model = AutoModelForCausalLM.from_pretrained( base_model, device_map={"": device}, torch_dtype=torch.float16, ) model = PeftModel.from_pretrained( model, lora_weights, device_map={"": device}, torch_dtype=torch.float16, ) else: model = AutoModelForCausalLM.from_pretrained( base_model, device_map={"": device}, low_cpu_mem_usage=True ) model = PeftModel.from_pretrained( model, lora_weights, device_map={"": device}, )
# unwind broken decapoda-research config model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk model.config.bos_token_id = 1 model.config.eos_token_id = 2 if not load_8bit: model.half() # seems to fix bugs for some users. model.eval() if torch.__version__ >= "2" and sys.platform != "win32": model = torch.compile(model) def evaluate( instruction, input=None, temperature=0.1, top_p=0.75, top_k=40, num_beams=4, max_new_tokens=128, **kwargs, ): prompt = prompter.generate_prompt(instruction, input) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(device) generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, ) s = generation_output.sequences[0] output = tokenizer.decode(s) return prompter.get_response(output) gr.Interface( fn=evaluate, inputs=[ gr.components.Textbox( lines=2, label="Instruction", placeholder="Tell me about alpacas.", ), gr.components.Textbox(lines=2, label="Input", placeholder="none"), gr.components.Slider( minimum=0, maximum=1, value=0.1, label="Temperature" ), gr.components.Slider( minimum=0, maximum=1, value=0.75, label="Top p" ), gr.components.Slider( minimum=0, maximum=100, step=1, value=40, label="Top k" ), gr.components.Slider( minimum=1, maximum=4, step=1, value=4, label="Beams" ), gr.components.Slider( minimum=1, maximum=2000, step=1, value=128, label="Max tokens" ), ], outputs=[ #gr.inputs.Textbox( gr.components.Textbox( lines=5, label="Output", ) ], title="BenTsao", description="", # noqa: E501 ).launch(server_name=server_name, share=share_gradio) 这是部分代码 求大佬解惑
The text was updated successfully, but these errors were encountered:
可能是pydantic版本的问题,参考 gradio-app/gradio#4974 将pydantic版本下调至1.10.7以解决
Sorry, something went wrong.
No branches or pull requests
prompter = Prompter(prompt_template)
tokenizer = AutoTokenizer.from_pretrained(base_model)
if device == "cuda":
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=load_8bit,
torch_dtype=torch.float16,
#device_map="auto",
device_map={"": 0},
#offload_folder="offload_folder"
)
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
)
elif device == "mps":
model = AutoModelForCausalLM.from_pretrained(
base_model,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = AutoModelForCausalLM.from_pretrained(
base_model, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
)
The text was updated successfully, but these errors were encountered: