Skip to content

Commit 23e82a0

Browse files
Initial file upload
1 parent bafdf01 commit 23e82a0

File tree

2 files changed

+321
-0
lines changed

2 files changed

+321
-0
lines changed

red_tide_sim_loop.R

+314
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,314 @@
1+
#NOTES: Things to discuss
2+
# -- Code assumes no seasons so will not work correctly with a seasonal model do
3+
# we need this capacity for any species we may want to include?
4+
#
5+
# -- No recruitment variability included at the moment. Is this important to add or
6+
# just more noise to confuse the issue. Should we wait for reviewer feedback and
7+
# just add it if they as for it? I don't think it will have any practical impact.
8+
#
9+
# -- Current approach uses fixed future F values for the simulation with approximates
10+
# a best case scenario where F_target stays the same and the fishery OFL is constantly
11+
# being updated to achieve this (such as through accurate interim assessments). I
12+
# think adding catch based removals will probably just exaggerate the impacts and
13+
# distract from the red tide effect by allowing claims that future assessments
14+
# would correct for the impacts.
15+
#
16+
# -- Which species should we try to implement this for (Red Grouper, Gag, ???)
17+
#
18+
# -- What outputs do we want to record (Landings, SSB, ???)
19+
20+
library(r4ss)
21+
#Source setup file that should be named local.setup so that it will be
22+
#ignored by github tracking.
23+
#
24+
local.setup.location <- "C:/Users/Nathan/Documents/GitHub/Red_tide_benchmarks/local.setup"
25+
source(local.setup.location)
26+
27+
#Source in the SEFSC projections function
28+
source(projection_script)
29+
30+
#Copy files to the simulation folder
31+
if(dir.exists(file.path(working_dir))){
32+
unlink(file.path(working_dir), recursive = TRUE)
33+
}
34+
dir.create(file.path(working_dir))
35+
dir.create(file.path(working_dir,"Base"))
36+
temp.files <- list.files(path=file.path(assessment_dir))
37+
file.copy(from = file.path(assessment_dir,temp.files), to = file.path(working_dir,"Base",temp.files))
38+
39+
#Read forecast file to get N_forecast years and base file for overwriting other runs
40+
forecast_base <- r4ss::SS_readforecast(file=file.path(working_dir,"Base","forecast.ss"))
41+
base_output <- r4ss::SS_output(file.path(working_dir,"Base"),covar = FALSE)
42+
43+
#Projection red tide values
44+
rt_proj_ave <- sort(seq(0,0.1,0.01))
45+
46+
#True red tide averages
47+
rt_mean <- sort(c(0.01,0.03,0.06))
48+
49+
#How many random red tide replicates to run
50+
n_rand_reps <- 500
51+
52+
#Set seed to allow replication of results
53+
global.seed <- 1234
54+
set.seed(global.seed)
55+
rand_offset <- 0 #offset to avoid using same seed as previous runs
56+
rand_seed <- floor(runif((n_rand_reps+rand_offset),100000,9999999))[(rand_offset+1):(n_rand_reps+rand_offset)]
57+
58+
#Identify the fleet associated with red tide
59+
rt_fleet <- 5
60+
61+
#Identify fleets to include in landings calculations
62+
landings_fleets <- 1:4
63+
64+
fleet_landings_cols <- grep("retain(B)",colnames(base_output$timeseries),fixed=TRUE)[landings_fleets]
65+
66+
#Setup the random red tide mortality vector details
67+
#Set the range for the number of red tide events in the projection period of 100 years
68+
n_rt_events_min <- 5 #The minimum number of red tide events during the projection period
69+
n_rt_events_max <- 20 #The maximum number of red tide events during the projection period
70+
71+
#Set the relative range for red tide in a single year these values will be rescaled
72+
#in each simulation so the total red tide mortality is always sums to the target mean
73+
rt_min <- 0.1 #Relative value of the minimum red tide in a single year
74+
rt_max <- 0.4 #Relative value of the maximum red tide in a single year
75+
76+
#Set up output matrices for storing values of interest
77+
#Data frame to track the iteration settings for each row of the results for indexing
78+
results_setting <- data.frame(rt_projected=c(sort(rep(rt_proj_ave,length(rt_mean)*n_rand_reps))),
79+
rt_mean=c(rep(sort(rep(rt_mean,n_rand_reps)),length(rt_proj_ave))),
80+
replicate=c(rep(1:n_rand_reps,length(rt_mean)*length(rt_proj_ave))))
81+
#Achieved OFL landings
82+
results_landings <- matrix(data=NA,nrow=(length(rt_proj_ave)*length(rt_mean)*n_rand_reps),ncol=(forecast_base$Nforecastyrs+base_output$endyr-base_output$startyr+1))
83+
#Achieved SSB
84+
results_SSB <- matrix(data=NA,nrow=(length(rt_proj_ave)*length(rt_mean)*n_rand_reps),ncol=(forecast_base$Nforecastyrs+base_output$endyr-base_output$startyr+1))
85+
#Target SPR
86+
results_SPR <- matrix(data=NA,nrow=(length(rt_proj_ave)*length(rt_mean)*n_rand_reps),ncol=(forecast_base$Nforecastyrs+base_output$endyr-base_output$startyr+1))
87+
#Target depletion
88+
results_dep <- matrix(data=NA,nrow=(length(rt_proj_ave)*length(rt_mean)*n_rand_reps),ncol=(forecast_base$Nforecastyrs+base_output$endyr-base_output$startyr+1))
89+
90+
#Index to track row for filling results data
91+
index_row <- 1
92+
93+
94+
#First loop over the red tide rate included in projections as this will only
95+
#need the projections to be calculated once.
96+
for(i in seq_along(rt_proj_ave)){
97+
#remove exisiting base folders if found
98+
proj_dir <- file.path(working_dir,paste0("rtproj_",i))
99+
if(dir.exists(proj_dir)){
100+
unlink(proj_dir, recursive = TRUE)
101+
}
102+
#Create new base folders and copy over the original model files
103+
dir.create(proj_dir)
104+
dir.create(file.path(proj_dir,"Base"))
105+
temp.files <- list.files(path=file.path(working_dir,"Base"))
106+
file.copy(from = file.path(working_dir,"Base",temp.files), to = file.path(proj_dir,"Base",temp.files))
107+
108+
#Adjust the redtide values for the base projection and rerun the projections
109+
#to estimate OFL.
110+
#For now I'm leaving out ABC as I think it distracts from the intent of the
111+
#simulation because ABC is supposed to account for unknown uncertainty not
112+
#offset an avoidable bias such as this.
113+
#This uses the average red tide rate in every projection year
114+
forecast_base$ForeCatch[forecast_base$ForeCatch$Fleet==rt_fleet,4] <- rep(rt_proj_ave[i],forecast_base$Nforecastyrs)
115+
116+
r4ss::SS_writeforecast(mylist=forecast_base,dir=file.path(proj_dir,"Base"),overwrite=TRUE)
117+
118+
base_proj <- run.projections(file.path(proj_dir,"Base"))
119+
120+
#Loop over all mean red tide level scenarios
121+
for(j in seq_along(rt_mean)){
122+
#remove exisiting mean red tide folders if found
123+
rt_dir <- file.path(proj_dir,paste0("rt_mean_",j))
124+
if(dir.exists(rt_dir)){
125+
unlink(rt_dir, recursive = TRUE)
126+
}
127+
#Create new folder for each mean red tide level and copy over the original model files
128+
dir.create(rt_dir)
129+
130+
#Loop over all random red tide sequences
131+
for(k in 1:n_rand_reps){
132+
#reset random seed for each random replicate seeds will be replicated across
133+
#projected red tide levels and mean red tide levels
134+
135+
set.seed(rand_seed[k])
136+
#Create folders for each random sequence
137+
dir.create(file.path(rt_dir,k))
138+
temp.files <- list.files(path=file.path(proj_dir,"Base","OFL_target"))
139+
file.copy(from = file.path(proj_dir,"Base","OFL_target",temp.files), to = file.path(rt_dir,k,temp.files))
140+
141+
#Calculate a random red tide mortality vector based on specified mean and frequency
142+
#draw a random number of red tide events from a uniform distribution between min and max number specified
143+
n_rt_events <- sample(n_rt_events_min:n_rt_events_max,1) #
144+
#calculate the total red tide mortality expected from the specified mean and number of projection years
145+
rt_total <- rt_mean[j]*forecast_base$Nforecastyrs
146+
#calculate random mortality rates from each event from a uniform distribution between min and max number specified
147+
rt_mags <- runif(n_rt_events,rt_min,rt_max)
148+
#rescale the red tide magnitudes so that they sum to the expected total mortality
149+
rt_mags <- rt_mags*(rt_total/sum(rt_mags))
150+
#create a zero mortality vector for all years
151+
rand_red_tide <- rep(0,forecast_base$Nforecastyrs)
152+
#randomly select years for the red tide mortality to occur and replace zero's with random mortality rates
153+
rand_red_tide[sample(1:forecast_base$Nforecastyrs,n_rt_events)] <- rt_mags
154+
155+
156+
#Modify forecast file to include random red tide mortality sequence
157+
forecast_rt <- r4ss::SS_readforecast(file=file.path(rt_dir,k,"forecast.ss"))
158+
forecast_rt$ForeCatch[forecast_rt$ForeCatch$Fleet==rt_fleet,4] <- rand_red_tide
159+
#Write out the new forecast file and run model with new random mortality vector
160+
r4ss::SS_writeforecast(mylist=forecast_rt,dir=file.path(rt_dir,k),overwrite=TRUE)
161+
shell(paste("cd /d ",file.path(rt_dir,k)," && ss -nohess",sep=""))
162+
163+
#Read in results and save values of interest for analysis
164+
run_output <- r4ss::SS_output(dir=file.path(rt_dir,k),covar = FALSE)
165+
166+
spr_series <- run_output$sprseries
167+
168+
time_series <- run_output$timeseries
169+
time_series_virg <- time_series[time_series$Era=="VIRG",]
170+
time_series <- time_series[time_series$Era!="VIRG" & time_series$Era!="INIT",]
171+
years <- unique(time_series$Yr)
172+
for(i in seq_along(years)){
173+
time_series_sub <- time_series[time_series$Yr==years[i],,drop=FALSE]
174+
spr_series_sub <- spr_series[spr_series$Yr==years[i],,drop=FALSE]
175+
results_landings[index_row,i] <- sum(time_series_sub[,fleet_landings_cols])
176+
results_SSB[index_row,i] <- sum(time_series_sub[,'SpawnBio'])
177+
results_SPR[index_row,i] <- sum(spr_series_sub[,'SPR'])
178+
results_dep[index_row,i] <- sum(spr_series_sub[,'Deplete'])
179+
}
180+
index_row <- index_row+1
181+
}
182+
}
183+
}
184+
185+
all_results <- list()
186+
all_results[[1]] <- results_landings
187+
all_results[[2]] <- results_SSB
188+
all_results[[3]] <- results_SPR
189+
all_results[[4]] <- results_dep
190+
191+
save(all_results,file=save_file)
192+
193+
#Summarize results for display
194+
summary_index <- 1
195+
196+
results_summary_setup <- data.frame(rt_projected=c(sort(rep(rt_proj_ave,length(rt_mean)))),
197+
rt_mean=c(rep(sort(rt_mean),length(rt_proj_ave))))
198+
199+
results_landings_summary_mean <- results_landings[1:(length(rt_proj_ave)*length(rt_mean)),]
200+
results_landings_summary_sd <- results_landings[1:(length(rt_proj_ave)*length(rt_mean)),]
201+
202+
results_SSB_summary_mean <- results_SSB[1:(length(rt_proj_ave)*length(rt_mean)),]
203+
results_SSB_summary_sd <- results_SSB[1:(length(rt_proj_ave)*length(rt_mean)),]
204+
205+
results_SPR_summary_mean <- results_SPR[1:(length(rt_proj_ave)*length(rt_mean)),]
206+
results_SPR_summary_sd <- results_SPR[1:(length(rt_proj_ave)*length(rt_mean)),]
207+
208+
results_dep_summary_mean <- results_dep[1:(length(rt_proj_ave)*length(rt_mean)),]
209+
results_dep_summary_sd <- results_dep[1:(length(rt_proj_ave)*length(rt_mean)),]
210+
211+
for(i in seq_along(rt_proj_ave)){
212+
for(j in seq_along(rt_mean)){
213+
rows <- which(results_setting[,"rt_projected"]==rt_proj_ave[i] & results_setting[,"rt_mean"]==rt_mean[j])
214+
215+
results_landings_summary_mean[summary_index,] <- apply(results_landings[rows,],2,mean)
216+
results_landings_summary_sd[summary_index,] <- apply(results_landings[rows,],2,sd)
217+
218+
results_SSB_summary_mean[summary_index,] <- apply(results_SSB[rows,],2,mean)
219+
results_SSB_summary_sd[summary_index,] <- apply(results_SSB[rows,],2,sd)
220+
221+
results_SPR_summary_mean[summary_index,] <- apply(results_SPR[rows,],2,mean)
222+
results_SPR_summary_sd[summary_index,] <- apply(results_SPR[rows,],2,sd)
223+
224+
results_dep_summary_mean[summary_index,] <- apply(results_dep[rows,],2,mean)
225+
results_dep_summary_sd[summary_index,] <- apply(results_dep[rows,],2,sd)
226+
227+
summary_index <- summary_index + 1
228+
}
229+
}
230+
231+
232+
plot(x=NA,y=NA,xlim=c(min(years),max(years)),ylim=c(min(results_landings),max(results_landings)))
233+
for(i in seq_along(results_landings_summary_mean[,1]))
234+
{
235+
if(results_summary_setup[i,"rt_mean"]==0.06){
236+
if(results_summary_setup[i,"rt_projected"]<results_summary_setup[i,"rt_mean"]){
237+
lines(x=years,y=results_landings_summary_mean[i,],col="red")
238+
}else if(results_summary_setup[i,"rt_projected"]>results_summary_setup[i,"rt_mean"]){
239+
lines(x=years,y=results_landings_summary_mean[i,],col="blue")
240+
}else{
241+
lines(x=years,y=results_landings_summary_mean[i,],col="green")
242+
}
243+
}
244+
}
245+
246+
plot(x=NA,y=NA,xlim=c(min(years),max(years)),ylim=c(min(results_SSB),max(results_SSB)))
247+
for(i in seq_along(results_SSB_summary_mean[,1]))
248+
{
249+
if(results_summary_setup[i,"rt_mean"]==0.06){
250+
if(results_summary_setup[i,"rt_projected"]<results_summary_setup[i,"rt_mean"]){
251+
lines(x=years,y=results_SSB_summary_mean[i,],col="red")
252+
}else if(results_summary_setup[i,"rt_projected"]>results_summary_setup[i,"rt_mean"]){
253+
lines(x=years,y=results_SSB_summary_mean[i,],col="blue")
254+
}else{
255+
lines(x=years,y=results_SSB_summary_mean[i,],col="green")
256+
}
257+
}
258+
}
259+
260+
plot(x=NA,y=NA,xlim=c(min(years),max(years)),ylim=c(min(results_SPR),max(results_SPR)))
261+
for(i in seq_along(results_SPR_summary_mean[,1]))
262+
{
263+
if(results_summary_setup[i,"rt_mean"]==0.06){
264+
if(results_summary_setup[i,"rt_projected"]<results_summary_setup[i,"rt_mean"]){
265+
lines(x=years,y=results_SPR_summary_mean[i,],col="red")
266+
}else if(results_summary_setup[i,"rt_projected"]>results_summary_setup[i,"rt_mean"]){
267+
lines(x=years,y=results_SPR_summary_mean[i,],col="blue")
268+
}else{
269+
lines(x=years,y=results_SPR_summary_mean[i,],col="green")
270+
}
271+
}
272+
}
273+
274+
plot(x=NA,y=NA,xlim=c(min(years),max(years)),ylim=c(min(results_dep),max(results_dep)))
275+
for(i in seq_along(results_dep_summary_mean[,1]))
276+
{
277+
if(results_summary_setup[i,"rt_mean"]==0.06){
278+
if(results_summary_setup[i,"rt_projected"]<results_summary_setup[i,"rt_mean"]){
279+
lines(x=years,y=results_dep_summary_mean[i,],col="red")
280+
}else if(results_summary_setup[i,"rt_projected"]>results_summary_setup[i,"rt_mean"]){
281+
lines(x=years,y=results_dep_summary_mean[i,],col="blue")
282+
}else{
283+
lines(x=years,y=results_dep_summary_mean[i,],col="green")
284+
}
285+
}
286+
}
287+
288+
289+
290+
291+
plot(x=NA,y=NA,xlim=c(min(years),max(years)),ylim=c(min(results_landings),max(results_landings)))
292+
for(i in seq_along(results_landings[,1]))
293+
{
294+
lines(x=years,y=results_landings[i,])
295+
}
296+
297+
plot(x=NA,y=NA,xlim=c(min(years),max(years)),ylim=c(min(results_SSB),max(results_SSB)))
298+
for(i in seq_along(results_SSB[,1]))
299+
{
300+
lines(x=years,y=results_SSB[i,])
301+
}
302+
303+
plot(x=NA,y=NA,xlim=c(min(years),max(years)),ylim=c(min(results_SPR),max(results_SPR)))
304+
for(i in seq_along(results_SPR[,1]))
305+
{
306+
lines(x=years,y=results_SPR[i,])
307+
}
308+
309+
plot(x=NA,y=NA,xlim=c(min(years),max(years)),ylim=c(min(results_dep),max(results_dep)))
310+
for(i in seq_along(results_dep[,1]))
311+
{
312+
lines(x=years,y=results_dep[i,])
313+
}
314+

setup_file_example.txt

+7
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,7 @@
1+
#To run the simulation model copy this file and rename it to local.setup then change the folder/file locations below to match your local setup
2+
#the .setup file extension will ensure that your local directory names are not saved to github.
3+
4+
projection_script <- "C:/Users/Documents/Allocation_forecasting.R" #Location of SEFSC forcasting function file
5+
assessment_dir <- "C:/Users/Documents/Base" #Location of your base assessment model this should be a finished estimated model with 100 years of forecast projections
6+
working_dir <- "C:/Users/Documents/sims" #This is the folder location where all simulation runs will be saved
7+
save_file <- "C:/Users/Documents/results" #This is a file name for saving the key simulation results so you can reload them later

0 commit comments

Comments
 (0)