-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_generator.py
345 lines (282 loc) · 17.5 KB
/
dataset_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import dataclasses
import os
import typing
import warnings
import joblib
import numpy as np
import xarray as xr
# import xarray_extras.csv
from sklearn import utils as sk_utils
import const
import utils
import utils_exp_post
from . import base
from poisoning import wrapper, generator
def xr_and_df_from_X_y(X, y, columns):
dataset_xr = xr.DataArray(np.hstack([X, y.reshape(-1, 1)]),
dims=('x', 'y'), coords={'y': columns + [const.COORD_LABEL]})
dataset_df = utils_exp_post.xr_to_df(dataset_xr)
return dataset_xr, dataset_df
@dataclasses.dataclass
class DatasetGenerator:
# X: np.ndarray
# y: np.ndarray
X_train_clean: np.ndarray
y_train_clean: np.ndarray
X_test: np.ndarray
y_test: np.ndarray
_poisoning_input: generator.PoisoningGenerationInput
columns: typing.Optional[typing.List[str]] = dataclasses.field(default=None)
_poisoning_algos: typing.List[wrapper.Poisoning] = dataclasses.field(default_factory=list)
_poisoning_points: typing.List[typing.Tuple[float, float]] = dataclasses.field(default_factory=list)
_all_datasets: xr.Dataset = dataclasses.field(default_factory=xr.Dataset)
def __len__(self):
return len(self._all_datasets)
@property
def all_datasets(self) -> xr.Dataset:
return self._all_datasets
@property
def poisoning_algos(self) -> typing.Sequence[wrapper.Poisoning]:
return self._poisoning_algos
def __post_init__(self):
# sk_utils.check_X_y(self.X, self.y)
sk_utils.check_X_y(self.X_train_clean, self.y_train_clean)
sk_utils.check_X_y(self.X_test, self.y_test)
# check the precision of the percentage of points/features to poison.
# More than 3 decimal numbers will cause issues in export.
for single_perc_point in self._poisoning_points:
for single_perc in single_perc_point:
s = len(str(single_perc).split('.')[1])
if s > 3:
warnings.warn(f'The precision of poisoning point {single_perc_point} is > 3. '
f'It will cause issues during export.')
self.columns = utils.check_and_get_columns(expected=self.X_train_clean.shape[1], got=self.columns)
@staticmethod
def from_dataset_to_poison(X_train, y_train, X_test, y_test, poisoning_generation_input: generator.PoisoningGenerationInput):
# X_train_clean, X_test, y_train_clean, y_test = model_selection.train_test_split(
# X, y, train_size=poisoning_generation_input.train_split,
# shuffle=poisoning_generation_input.shuffle)
poisoning_points, wrappers = poisoning_generation_input.generate_from_sequence()
# it's too early to create the multidimensional xr.DataArray.
return DatasetGenerator(
# X=X, y=y,
X_train_clean=X_train, y_train_clean=y_train,
X_test=X_test, y_test=y_test, _poisoning_points=poisoning_points, _poisoning_algos=wrappers,
columns=poisoning_generation_input.columns, _poisoning_input=poisoning_generation_input
)
@staticmethod
def from_dataset_already_poisoned_dataset(
X_y_train_clean: xr.DataArray,
X_y_test: xr.DataArray,
# X_y_train_clean: xr.Dataset,
# X_y_test: xr.Dataset,
poisoned_datasets: xr.Dataset,
poisoning_generation_input: generator.PoisoningGenerationInput
) -> "DatasetGenerator":
# the column names are in y coords. We pick all but the one with value const.COORD_LABEL
# that indicates the column with the label.
columns = X_y_train_clean.coords['y'].values
columns = columns[columns != const.COORD_LABEL]
# X_train_clean: np.ndarray = X_y_train_clean.loc[:, columns].values
# y_train_clean: np.ndarray = X_y_train_clean.loc[:, const.COORD_LABEL].values
#
# X_test: np.ndarray = X_y_test.loc[:, columns].values
# y_test: np.ndarray = X_y_test.loc[:, const.COORD_LABEL].values
X_train_clean = X_y_train_clean.loc[:, columns].to_numpy()
y_train_clean = X_y_train_clean.loc[:, const.COORD_LABEL].to_numpy()
X_test = X_y_test.loc[:, columns].to_numpy()
y_test = X_y_test.loc[:, const.COORD_LABEL].to_numpy()
# vstack when working with multidimensional arrays.
# X = np.vstack([X_train_clean, X_test])
# y = np.hstack([y_train_clean, y_test])
poisoning_points, wrappers = poisoning_generation_input.generate_from_sequence()
# check that all the percentages are found.
for perc_point, perc_feature in poisoning_points:
found = False
for poisoned_dataset in poisoned_datasets.values():
if poisoned_dataset.attrs[const.KEY_ATTR_POISONED][const.COORD_PERC_POINTS] == perc_point and \
poisoned_dataset.attrs[const.KEY_ATTR_POISONED][const.COORD_PERC_FEATURES] == perc_feature:
found = True
if not found:
raise ValueError(f'Percentage of poisoning ({perc_point}, {perc_feature}) not found in poisoned '
f'datasets. Got: '
f'{[(poisoned_dataset.attrs[const.KEY_ATTR_POISONED][const.COORD_PERC_POINTS], poisoned_dataset.attrs[const.KEY_ATTR_POISONED][const.COORD_PERC_POINTS]) for poisoned_dataset in poisoned_datasets.values()]}')
# load only those specified in the sequence.
kept = []
# now, we consider only the poisoning points that are specified in the input.
for poisoned_dataset in poisoned_datasets.values():
found = False
for perc_point, perc_feature in poisoning_points:
if poisoned_dataset.attrs[const.KEY_ATTR_POISONED][const.COORD_PERC_POINTS] == perc_point and \
poisoned_dataset.attrs[const.KEY_ATTR_POISONED][const.COORD_PERC_FEATURES] == perc_feature:
found = True
if found:
kept.append(poisoned_dataset)
poisoned_datasets_filtered = xr.Dataset(data_vars={
(data_array.attrs[const.KEY_ATTR_POISONED][const.COORD_PERC_POINTS],
data_array.attrs[const.KEY_ATTR_POISONED][const.COORD_PERC_FEATURES]): data_array
for data_array in kept})
return DatasetGenerator(X_train_clean=X_train_clean, y_train_clean=y_train_clean,
X_test=X_test, y_test=y_test, _poisoning_points=poisoning_points,
_poisoning_algos=wrappers, # _all_datasets=poisoned_datasets,
_all_datasets=poisoned_datasets_filtered,
_poisoning_input=poisoning_generation_input)
def clean_dataset_attrs(self) -> typing.Dict[str, typing.Dict[str, float]]:
return {const.KEY_ATTR_POISONED: self._poisoning_algos[0].perform_info.get_info_clean_as_dict()}
def generate(self) -> "DatasetGenerator":
"""
Idempotent. If override is specified, a new instance is returned leaving the current one,
if existing, untouched.
:return:
"""
def inner_loop(poisoning_algo_: wrapper.Poisoning) -> xr.DataArray:
X_poisoned, y_poisoned = poisoning_algo_.fit(X=self.X_train_clean, y=self.y_train_clean
).transform(X=self.X_train_clean, y=self.y_train_clean)
# convert the index of poisoned data points [15, 30, ..., ] to a boolean index
# that will be hstack-ed.
poisoning_idx = np.zeros(len(X_poisoned))
poisoning_idx[poisoning_algo_.performer.idx_of_poisoned_data_points] = True
arr = xr.DataArray(np.hstack([X_poisoned, y_poisoned.reshape(-1, 1), poisoning_idx.reshape(-1, 1)]),
dims=('x', 'y'), coords={'y': self.columns + [const.COORD_LABEL, const.COORD_POISONED]},
attrs={const.KEY_ATTR_POISONED: poisoning_algo_.perform_info.get_info_as_dict()})
return arr
# with joblib.parallel_backend(backend='dask'):
with joblib.Parallel(n_jobs=len(self._poisoning_algos)) as parallel:
all_datasets: typing.List[xr.DataArray] = parallel(
joblib.delayed(inner_loop)(poisoning_algo) for poisoning_algo in self._poisoning_algos)
# all_datasets = [inner_loop(poisoning_algo) for poisoning_algo in self._poisoning_algos]
poisoned_datasets = xr.Dataset(data_vars={
(data_array.attrs[const.KEY_ATTR_POISONED][const.COORD_PERC_POINTS],
data_array.attrs[const.KEY_ATTR_POISONED][const.COORD_PERC_FEATURES]): data_array
for data_array in all_datasets})
# if override and len(self._all_datasets) > 0:
# return DatasetGenerator(
# X=self.X, y=self.y, X_train_clean=self.X_train_clean, y_train_clean=self.y_train_clean,
# X_test=self.X_test, y_test=self.y_test, columns=self.columns,
# _poisoning_algos=self._poisoning_algos, _poisoning_points=self._poisoning_points,
# _all_datasets=poisoned_datasets, _poisoning_input=self._poisoning_input)
# else:
# self._all_datasets = xr.Dataset(data_vars={data_array.attrs.values(): data_array
# for data_array in all_datasets})
# return self
self._all_datasets = poisoned_datasets
return self
def export(self, base_directory: typing.Optional[str] = None, exists_ok: bool = False):
if base_directory is not None:
# create directory.
os.makedirs(base_directory, exist_ok=exists_ok)
base_directory_csv = os.path.join(base_directory, base.DIR_DATASET_NAME_EXPORT_CSV)
os.makedirs(base_directory_csv, exist_ok=exists_ok)
# clean_dataset = xr.DataArray(np.hstack([self.X_train_clean, self.y_train_clean.reshape(-1, 1)]),
# dims=('x', 'y'), coords={'y': self.columns + [const.COORD_LABEL]})
#
# utils_exp_post.xr_to_df(clean_dataset).to_csv(
# os.path.join(base_directory_csv, f'{base.FILE_NAME_DATASET_PREFIX_CLEAN}.csv'), index=False)
clean_dataset_xr, clean_dataset_df = xr_and_df_from_X_y(X=self.X_train_clean, y=self.y_train_clean,
columns=self.columns)
clean_dataset_df.to_csv(os.path.join(base_directory_csv, f'{base.FILE_NAME_DATASET_PREFIX_CLEAN}.csv'),
index=False)
for i, dataset_name in enumerate(self._all_datasets):
utils_exp_post.xr_to_df(self._all_datasets[dataset_name]).to_csv(
os.path.join(base_directory_csv,
f'{self._poisoning_points[i][0]}_{self._poisoning_points[i][1]}.csv'), index=False)
# test_dataset = xr.DataArray(np.hstack([self.X_test, self.y_test.reshape(-1, 1)]),
# dims=('x', 'y'), coords={'y': self.columns + [const.COORD_LABEL]})
# # xarray_extras.csv.to_csv(test_dataset, os.path.join(base_directory_csv,
# # f'{base.FILE_NAME_DATASET_PREFIX_TEST}.csv'), index=False)
#
# utils_exp_post.xr_to_df(test_dataset).to_csv(
# os.path.join(base_directory_csv, f'{base.FILE_NAME_DATASET_PREFIX_TEST}.csv'), index=False)
test_dataset_xr, test_dataset_df = xr_and_df_from_X_y(X=self.X_test, y=self.y_test,
columns=self.columns)
test_dataset_df.to_csv(os.path.join(base_directory_csv, f'{base.FILE_NAME_DATASET_PREFIX_TEST}.csv'),
index=False)
base_directory_binary = os.path.join(base_directory, base.DIR_DATASET_NAME_EXPORT_BINARY)
os.makedirs(base_directory_binary, exist_ok=exists_ok)
# we finally export using xarray native format.
# We export three datasets: poisoned, clean, and test.
# Test has a different shape than poisoned and clean (shorter)
# and cannot therefore be added to the others.
# Clean has a different shape than poisoned (fewer columns)
# and cannot therefore be added to the others.
# Unfortunately, we need to do a bit of renaming because dictionary as key of the
# dataset is not accepted.
# we also need to "flatten" the attributes of each individual DataArray, we can't have a dict of dict.
new_data_arr = {}
for k in self._all_datasets.keys():
new_k = from_poisoned_tuple_to_str(k)# from_poisoned_dict_to_str(k)
# need to copy: otherwise we are changing the attributes of something that
# should be not be changed since new_data_arr is only temporary.
new_data_arr[new_k] = self._all_datasets[k].copy()
new_data_arr[new_k].attrs = new_data_arr[new_k].attrs[const.KEY_ATTR_POISONED]
# print(new_data_arr[new_k].attrs)
xr.Dataset(new_data_arr).to_netcdf(os.path.join(base_directory_binary,
f'{base.FILE_NAME_DATASET_PREFIX_POISONED}.h5netcdf'),
engine='h5netcdf')
clean_dataset_xr.to_netcdf(os.path.join(base_directory_binary,
f'{base.FILE_NAME_DATASET_PREFIX_CLEAN}.h5netcdf'), engine='h5netcdf')
test_dataset_xr.to_netcdf(os.path.join(base_directory_binary,
f'{base.FILE_NAME_DATASET_PREFIX_TEST}.h5netcdf'), engine='h5netcdf')
# we also export the configuration.
@staticmethod
def import_from_directory(base_directory: str,
poisoning_generation_input: generator.PoisoningGenerationInput) -> "DatasetGenerator":
"""
Parameters
------
base_directory: str
It can be the directory containing both binary and non-binary datasets, or the subdirectory
containing binary files only.
To this aim, it looks whether binary files are there according to the expected names:
-
-
-
If not, it tries to go into a subdirectory named `base.DIR_DATASET_NAME_EXPORT_BINARY`.
If not found, it raises a `ValueError`.
:return:
"""
files = os.listdir(base_directory)
if base.DIR_DATASET_NAME_EXPORT_BINARY in files and \
os.path.isdir(os.path.join(base_directory, base.DIR_DATASET_NAME_EXPORT_BINARY)):
# ok, let's go to the binary directory
base_directory = os.path.join(base_directory, base.DIR_DATASET_NAME_EXPORT_BINARY)
# look for binary files.
file_dataset_poisoned = os.path.join(base_directory, f'{base.FILE_NAME_DATASET_PREFIX_POISONED}.h5netcdf')
file_dataset_test = os.path.join(base_directory, f'{base.FILE_NAME_DATASET_PREFIX_TEST}.h5netcdf')
file_dataset_clean = os.path.join(base_directory, f'{base.FILE_NAME_DATASET_PREFIX_CLEAN}.h5netcdf')
# files = list(map(lambda f: os.path.join(base_directory, f), files))
# if file_dataset_poisoned not in files:
# raise ValueError(f'{base.DIR_DATASET_NAME_EXPORT_BINARY} missing ')
X_y_train_clean = xr.open_dataarray(file_dataset_clean)
X_y_test = xr.open_dataarray(file_dataset_test)
# here, we need to rename the variable names back to tuple
poisoned_datasets = xr.open_dataset(file_dataset_poisoned)
poisoned_datasets = poisoned_datasets.rename({k: from_poisoned_str_to_tuple(k) for k in poisoned_datasets.keys()})
# we also need to "de-flatten" the individual attributes as well, that have been flattened back for export.
for k in poisoned_datasets.keys():
poisoned_datasets[k].attrs = {const.KEY_ATTR_POISONED: poisoned_datasets[k].attrs}
# need to import config. Maybe it works with dacite.
# in reality the problem is significantly more complex: we need to export learnt model.
# A thesis is necessary.
# TODO clean and test.csv do not have the correct headers set
return DatasetGenerator.from_dataset_already_poisoned_dataset(
X_y_test=X_y_test, X_y_train_clean=X_y_train_clean, poisoned_datasets=poisoned_datasets,
poisoning_generation_input=poisoning_generation_input)
# def from_poisoned_dict_to_str(val) -> str:
# # what we receive is an object of instance dict_values (what dict.values() returns) that we must
# # convert to a dict since we expect it to be a dict.
# val = dict(list(val)[0])
# return f'{val[const.COORD_PERC_POINTS]}_{val[const.COORD_PERC_FEATURES]}'
def from_poisoned_tuple_to_str(val: typing.Tuple[float, float]) -> str:
return f'{val[0]}_{val[1]}'
# def from_poisoned_str_to_dict(val: str) -> typing.Dict[str, float]:
# # splits = val.split('_')
# #
# # return {
# # const.COORD_PERC_POINTS: float(splits[0]),
# # const.COORD_PERC_FEATURES: float(splits[1])
# # }
def from_poisoned_str_to_tuple(val: str) -> typing.Tuple[float, float]:
splits = val.split('_')
return float(splits[0]), float(splits[1])
# IRRELEVANT_COLUMNS = {const.COORD_LABEL, base.COORD_POISONED}