-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiment_iop.py
505 lines (418 loc) · 26.6 KB
/
experiment_iop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
import copy
import dataclasses
import os.path
import typing
import warnings
import joblib
# from matplotlib import figure, pyplot as plt
from plotly import subplots
from plotly import graph_objects as go
from plotly.graph_objects import scatter
import numpy as np
import pandas as pd
import xarray as xr
import const
import pipe
import utils_exp_post
from . import base, dataset_generator
def xr_to_df(data_array: xr.DataArray) -> pd.DataFrame:
# could use data_array.to_df, but it does not really work
# as I would
if len(data_array.shape) > 2:
raise ValueError('Could output 2d xr.DataArray only')
arr = data_array.to_numpy()
return pd.DataFrame(arr, columns=data_array.coords['y'].values.tolist())
@dataclasses.dataclass
class ExecutePipelineWithRepOutput:
"""
contains the result of the execution of a single pipeline
multiple times on the same (poisoned) dataset (i.e., with a single percentage of poisoning).
"""
info: base.ExpInfo
# 2-row pd.DataFrame containing the average of the required pipeline steps without (row 0)
# and with poisoning (row 1).
# Note that this is different from clean or poisoned dataset. Here, we work at data point level.
result: pd.DataFrame
# averaged risk quality
result_risk: pd.Series
# the figure plotting the results. The dict maps between the step name and the (exp info, figure)
figures: typing.Optional[typing.Dict[str, typing.Tuple[base.ExpInfo, go.Figure]]] = dataclasses.field(
default=None)
iops_results: typing.Optional[typing.List[pd.DataFrame]] = dataclasses.field(default=None)
@staticmethod
def from_results(
results: typing.List[pipe.ExtPipeline], poisoning_idx: np.ndarray,
info: base.ExpInfo, keep_also_iops: bool = False, keep_also_figures: bool = False, ):
# for each repetition, we create a pd.DataFrame
# with the output of the pipeline and an additional column "poisoning_idx".
def _inner_func(result_: pipe.ExtPipeline):
mean_l = []
std_l = []
for step_to_evaluate_ in result_.steps_to_evaluate:
df = utils_exp_post.data_array_to_df(result_.output_for_export[step_to_evaluate_][1].get_pre_and_post_as_xr())
df[const.KEY_ATTR_POISONED] = poisoning_idx
grouped = df.groupby([const.KEY_ATTR_POISONED])
# an individual result of mean() and std() is a DataFrame looking like this:
# col_name
# Poisoning
# 0 <val>
# 1 <val>
mean_l.append(grouped.mean())
std_l.append(grouped.std())
# retrieve the risk quality. It is a pd.Series
risk_quality, _ = base.extract_and_evaluate_risk(p=result_, poisoning_info=poisoning_idx)
# here we just need to join the different mean(s) and std(s)
# so that later, when we average their value over the individual repetitions,
# we can do that with ease.
join_mean = utils_exp_post.just_merge_repeatedly(mean_l)
join_std = utils_exp_post.just_merge_repeatedly(std_l)
return join_mean, join_std, risk_quality
# we retrieve the individual avg and mean for each required step in each pipeline.
raw_results = joblib.Parallel(n_jobs=len(results))(joblib.delayed(_inner_func)(p) for p in results)
# deconstruct results
agg_results_mean = []
agg_results_std = []
agg_results_risk = []
for single_result_mean, single_result_std, single_risk_quality in raw_results:
agg_results_mean.append(single_result_mean)
agg_results_std.append(single_result_std)
agg_results_risk.append(single_risk_quality)
# now we compute the average of the retrieved mean and std,
# that is, their average value over the different executions (repetitions) of this pipeline.
# now here we have a pd.DataFrame containing the mean, one for each execution.
# each item we concat is a 2-row pd.DataFrame, containing the mean for poisoned = 0
# and poisoned = 1
# i.e.,
# agg_results_mean[0] = pd.DataFrame([[0, ...], [1, ...]])
# where 0 and 1 are the index of the pd.DataFrame, and the remaining values are the actual averaged
# values output of the pipeline. We do reset_index() so the index (containing whether poisoning or not)
# is set as a normal column. This last step is not necessary, just a precaution.
concat_mean = pd.concat(agg_results_mean).reset_index()
concat_std = pd.concat(agg_results_std).reset_index()
# we just we have one pd.Series for each repetition.
concat_risk = pd.DataFrame(agg_results_risk)
# now, we do another group_by on poisoned and poisoned to retrieve
# the final avg. The two "mean()" are correct.
mean_mean = concat_mean.groupby([const.KEY_ATTR_POISONED]).mean()
mean_std = concat_std.groupby([const.KEY_ATTR_POISONED]).mean()
mean_risk = concat_risk.mean()
# now we build the 2-row pd.DataFrame containing the values that we retrieved, the indication of
# poisoned or not, and the ExpInfo. We are going to do a join, but we can't do a join
# where the columns have the same name, so we have to rename them first, then we join on the index.
mean_mean = mean_mean.rename(lambda col: f'{const.PREFIX_AVG}({col})', axis='columns')
mean_std = mean_std.rename(lambda col: f'{const.PREFIX_STD}({col})', axis='columns')
# by doing reset_index() the column containing information on poisoning is placed first.
joined = mean_mean.join(mean_std, validate='one_to_one').reset_index()
# now let's add the poisoning info.
joined = info.prepend_to(joined)
mean_risk = info.prepend_to(mean_risk)
iops_result = None
# if we want to keep also the results of the IoPs and the pipeline did have some
# output_for_export.
if keep_also_iops and len(results[0].steps_to_export) > 0:
def _inner(single_pipeline_: pipe.ExtPipeline):
output_df_l = []
# collects the IoPs we are interested in export.
output_l = [(single_pipeline_.output_for_export[i][0],
utils_exp_post.data_array_to_df(single_pipeline_.output_for_export[i][1].get_pre_and_post_as_xr()))
for i in single_pipeline_.steps_to_export]
# now we rename the column of each pd.DataFrame prepending the name
# of the step.
for i_ in range(len(output_l)):
step = output_l[i_][0]
output_df_l.append(output_l[i_][1].rename(lambda col: f'{step.name}_{col}', axis='columns'))
# now we can finally join everything together.
return utils_exp_post.just_merge_repeatedly(output_df_l)
iops_result = joblib.Parallel(n_jobs=len(results))(joblib.delayed(_inner)(p) for p in results)
figures = None
if keep_also_figures:
# indexing fails if poisoning_idx is not considered as a boolean array
poisoning_idx_ = poisoning_idx.astype(bool)
figures = {}
# we must deconstruct the results to have the same set of results for each step across
# repetition, i.e., to print the same step output in the same figure
# Note: the pipelines are just copy of each other, so we can safely access only the first one.
deconstructed_for_figures = {k: [] for k in results[0].steps_to_figures}
for step_to_plot_idx in results[0].steps_to_figures:
for pipeline_rep in results:
deconstructed_for_figures[step_to_plot_idx].append(
pipeline_rep.output_for_export[step_to_plot_idx][1])
for step_to_plot_idx, outputs in deconstructed_for_figures.items():
# title of the plot (individual subplot)
pipeline_and_step_name = f'{results[0].name}_{results[0].steps[step_to_plot_idx].name})'
# fig, axs = plt.subplots(nrows=len(results), ncols=2, figsize=(15, 15),
# layout='constrained')
fig = subplots.make_subplots(rows=len(results), cols=2, start_cell='top-left',
# subplot_titles=[f'{pipeline_and_step_name}_{when}, rep: {rep}'
# for rep in range(len(results))
# for when in ['PRE', 'POST']],
column_widths=[0.5, 0.5], # vertical_spacing=(1 / (len(results) - 1))
vertical_spacing=0.075
)
for i, output in enumerate(outputs):
# in plotly rows and columns cont starts at 1
row_idx = i + 1
output_pre: xr.DataArray = output.pre_aggregation_output
output_post: xr.DataArray = output.post_aggregation_output
# whether to do the first plot.
do_first = True
if len(output_pre.shape) == 1 or output_pre.shape[1] == 1:
# if output is 1d...
X = output_pre.to_series()
y = np.zeros(len(output_pre))
x_title = output_pre.coords['y'].values[0]
y_title = 'dummy'
else:
# if output is 2d
if output_pre.shape[1] != 2:
warnings.warn('Plot has more than 2 dimensions. Skip.')
do_first = False
else:
X = output_pre[:, 0]
y = output_pre[:, 1]
x_title = output_pre.coords['y'].values[0]
y_title = output_pre.coords['y'].values[1]
if do_first:
# low alpha so that we can easily look for overlaps.
# axs[i, 0].scatter(x=X[~poisoning_idx_], y=y[~poisoning_idx_], color='green', alpha=0.4,
# label='Non-Poisoned', marker='o')
# axs[i, 0].scatter(x=X[poisoning_idx_], y=y[poisoning_idx_], color='red', alpha=0.4,
# label='Poisoned', marker='^')
#
# axs[i, 0].set_title(f'{pipeline_and_step_name}_PRE, repetition: {i}')
# axs[i, 0].legend()
kwargs_scatter_non_poisoned = {'showlegend': row_idx == 1}
kwargs_scatter_poisoned = {'showlegend': row_idx == 1}
if row_idx == 1: # so it is not repeated every time.
kwargs_scatter_non_poisoned['name'] = 'Non-Poisoned'
kwargs_scatter_poisoned['name'] = 'Poisoned'
fig.add_trace(go.Scatter(x=X[~poisoning_idx_], y=y[~poisoning_idx_], mode='markers',
marker=scatter.Marker(color='green', opacity=0.4, symbol='circle'),
**kwargs_scatter_non_poisoned
), row=row_idx, col=1)
fig.add_trace(go.Scatter(x=X[poisoning_idx_], y=y[poisoning_idx_], mode='markers',
marker=scatter.Marker(color='red', opacity=0.4, symbol='triangle-up'),
**kwargs_scatter_poisoned
), row=row_idx, col=1)
fig.update_xaxes(title_text=x_title, title_font={'size': 10}, row=row_idx, col=1)
fig.update_yaxes(title_text=y_title, title_font={'size': 10}, row=row_idx, col=1)
if not output_pre.equals(output_post) and do_first:
# plot also the second column, with the "binarized" risk.
risky_idx = np.argwhere(output_post.values == 1).flatten()
non_risky_idx = np.argwhere(output_post.values == 0).flatten()
poisoned_idx = np.argwhere(poisoning_idx_ == True).flatten()
non_poisoned_idx = np.argwhere(poisoning_idx_ == False).flatten()
risky_and_poisoned_idx = np.intersect1d(risky_idx, poisoned_idx)
other_idx = np.arange(len(y))[~risky_and_poisoned_idx]
fig.add_trace(
go.Scatter(x=X[other_idx],
y=y[other_idx],
marker=scatter.Marker(color='green', opacity=0.3, symbol='circle'),
mode='markers',
name='Other'), row=row_idx, col=2)
fig.add_trace(go.Scatter(x=X[risky_and_poisoned_idx], y=y[risky_and_poisoned_idx],
mode='markers',
marker=scatter.Marker(color='red', opacity=0.4, symbol='triangle-up'),
name='Poisoned, risk=1'), row=row_idx, col=2)
fig.update_layout( # xaxis_range=[0, 1], yaxis_range=[0, 1],
margin={'t': 70, 'l': 0, 'r': 0, 'b': 0},
title_text=f'{pipeline_and_step_name}[PRE and POST]',
legend={'yanchor': 'top', 'y': 1.05, 'xanchor': 'left', 'x': 0.01, 'orientation': 'h',
'font': {'size': 10}},
width=650, height=800)
figures[results[0].steps[step_to_plot_idx].name] = (info, fig)
return ExecutePipelineWithRepOutput(info=info, result=joined, iops_results=iops_result,
result_risk=mean_risk, figures=figures)
@dataclasses.dataclass
class ExecutePipelineOutputOnAll:
"""
Results of executing the pipeline on a poisoned dataset varying the percentage of poisoning.
"""
result: pd.DataFrame
result_risk: pd.DataFrame
# one item for each percentage of poisoning. So, each item refers to a specific poisoning config, and then
# maps the step (name) to the figure and corresponding exp info.
figures: typing.Optional[
typing.List[typing.Dict[str, typing.Tuple[base.ExpInfo, go.Figure]]]] = dataclasses.field(
default=None)
iops: typing.Optional[typing.List[typing.Tuple[base.ExpInfo, typing.List[pd.DataFrame]]]] = dataclasses.field(
default=None)
@staticmethod
def from_results(results: typing.List[ExecutePipelineWithRepOutput],
keep_also_iops: bool = False, keep_also_figures: bool = False, ):
# what we have to do is to "compose"
# the overall result pd.DataFrame by just placing the results one after the
# other.
dfs = []
# a list of pd.Series
risk_s = []
iops: typing.List[typing.Tuple[base.ExpInfo, typing.List[pd.DataFrame]]] = [] if keep_also_iops else None
figures: typing.List[typing.Dict[str, typing.Tuple[base.ExpInfo, go.Figure]]] = [] if (
keep_also_figures) else None
for single_result in results:
dfs.append(single_result.result)
risk_s.append(single_result.result_risk)
if keep_also_iops:
iops.append((single_result.info, single_result.iops_results))
if keep_also_figures:
figures.append(single_result.figures)
# that's it!
# what we do there is appending the pd.DataFrame one below the other. We then drop the index.
# It is not necessary to add the pipeline name, percentage of poisoning, and so on
# because they are already added in the pd.DataFrame we are concatenating.
return ExecutePipelineOutputOnAll(result=pd.concat(dfs).reset_index(drop=True),
result_risk=pd.DataFrame(risk_s),
iops=iops, figures=figures)
@dataclasses.dataclass
class ExportConfigIoP(base.AbstractExportConfigWithDirectory):
export_also_iops: bool = dataclasses.field(default=False)
export_also_figures: bool = dataclasses.field(default=False)
export_png: bool = dataclasses.field(default=False)
export_html: bool = dataclasses.field(default=False)
def __post_init__(self):
if self.export_also_figures and not self.export_png and not self.export_html:
raise ValueError('if export_also_figures then at least 1 format must be selected')
@dataclasses.dataclass
class AnalyzedResultsIoP:
"""
Wrapper class containing the results of executing multiple pipelines.
"""
results: typing.Dict[str, ExecutePipelineOutputOnAll]
@staticmethod
def from_results(results: typing.Dict[str, ExecutePipelineOutputOnAll]):
return AnalyzedResultsIoP(results=results)
def export(self, config: ExportConfigIoP):
if config.base_directory is None:
return
# we need to create two directories. In the first one
# we save the aggregated data, i.e., those with average and so on.
# in the second one we eventually export the individual IoPs.
dir_aggregated_group = os.path.join(config.base_directory, base.EXP_IOP_DIR_AGGREGATED)
dir_aggregated_risk = os.path.join(config.base_directory, base.EXP_IOP_DIR_RISK)
dir_plots = os.path.join(config.base_directory, base.EXP_IOP_DIR_FIGURES)
to_create = [dir_aggregated_group, dir_aggregated_risk]
if config.export_also_figures:
to_create.append(dir_plots)
for to_create in to_create:
os.makedirs(to_create, exist_ok=config.exists_ok)
for pipeline_name, pipeline_results in self.results.items():
# this is the aggregated result (i.e., grouped)
pipeline_results.result.to_csv(os.path.join(dir_aggregated_group, f'{pipeline_name}.csv'), index=False)
# this is the risk results
pipeline_results.result_risk.to_csv(os.path.join(dir_aggregated_risk, f'{pipeline_name}.csv'), index=False)
# now let's see if we need to export IoPs as well.
if config.export_also_iops:
if pipeline_results.iops is None or len(pipeline_results.iops) == 0:
raise ValueError(f'Requested to export also IoPs but no IoP found for {pipeline_name}')
dir_individual = os.path.join(config.base_directory, base.EXP_IOP_DIR_INDIVIDUAL_IOP)
# we first create the directory holding the different executions of the IoPs
# in this pipeline.
base_iop_pipeline_dir = os.path.join(dir_individual, pipeline_name)
os.makedirs(base_iop_pipeline_dir, exist_ok=config.exists_ok)
# now pipeline_results.iops is a list of pairs (ExpInfo, list[pd.DataFrame])
# Each pair contains **all** the results of this pipeline execution.
# In particular, we have the percentage of poisoning and the set of results
# retrieved under this percentage: we have set of results because the pipeline is executed
# multiple times for each percentage.
for all_iop_of_this_pipeline in pipeline_results.iops:
exp_info: base.ExpInfo = all_iop_of_this_pipeline[0]
actual_results: typing.List[pd.DataFrame] = all_iop_of_this_pipeline[1]
for i, actual_result in enumerate(actual_results):
# the file is called perc_points_perc_features_rep-number.csv
actual_result.to_csv(os.path.join(base_iop_pipeline_dir, f'{exp_info.mini_str()}_{i}.csv'),
index=False)
if config.export_also_figures:
# dir_html = os.path.join(dir_plots, base.EXP_IOP_DIR_FIGURES_HTML)
# dir_png = os.path.join(dir_plots, base.EXP_IOP_DIR_FIGURES_PNG)
# create a directory for each pipeline.
pipeline_fig_dir = os.path.join(dir_plots, pipeline_name)
os.makedirs(pipeline_fig_dir, exist_ok=config.exists_ok)
# print(f'exporting figures: {pipeline_results.figures}')
for figures in pipeline_results.figures:
for step_name, (exp_info, figure_) in figures.items():
# figure_.savefig(os.path.join(pipeline_fig_dir, f'{exp_info.mini_str()}_{step_name}.png'))
# print(f'exporting {pipeline_fig_dir}+{exp_info.mini_str()}_{step_name}.png')
if config.export_html:
figure_.write_html(os.path.join(pipeline_fig_dir, f'{exp_info.mini_str()}_{step_name}.html'),
include_plotlyjs='cdn',)
#include_plotlyjs='https://cdnjs.cloudflare.com/ajax/libs/plotly.js/1.33.1/plotly.min.js',)
if config.export_png:
figure_.write_image(os.path.join(pipeline_fig_dir, f'{exp_info.mini_str()}_{step_name}.png'),
scale=6)
class ExperimentIoP(base.AbstractExperiment):
def __init__(self, repetitions: int,
poisoned_datasets: xr.Dataset,
pipelines: typing.List[pipe.ExtPipeline],
columns: typing.Optional[typing.List[str]] = None,
keep_also_iops: typing.Optional[bool] = False,
keep_also_figures: typing.Optional[bool] = False,
# export_png: typing.Optional[bool] = False,
# export_html: typing.Optional[bool] = False,
):
super().__init__(repetitions=repetitions, clean_dataset_attrs={},
poisoned_datasets=poisoned_datasets, columns=columns)
self.pipelines = pipelines
self.results: typing.Dict[str, typing.List[xr.Dataset]] = dict()
self.keep_also_iops = keep_also_iops or False
self.keep_also_figures = keep_also_figures or False
# self.export_html = export_html or False
# self.export_png = export_png or False
base.check_unique_pipeline_names(self.pipelines)
if keep_also_iops:
for pipeline in pipelines:
if len(pipeline.important_steps) == 0:
raise ValueError('You require to export IoPs but there are no important steps '
f'in pipeline "{pipeline.name}"')
@property
def analysis_class(self) -> typing.Type[AnalyzedResultsIoP]:
return AnalyzedResultsIoP
@staticmethod
def from_dataset_generator(dg: dataset_generator.DatasetGenerator,
pipelines: typing.List[pipe.ExtPipeline], repetitions: int,
keep_also_iops: typing.Optional[bool] = False,
keep_also_figures: typing.Optional[bool] = False,
# export_png: typing.Optional[bool] = False, export_html: typing.Optional[bool] = False,
) -> "ExperimentIoP":
return ExperimentIoP(pipelines=pipelines, poisoned_datasets=dg.all_datasets, columns=dg.columns,
repetitions=repetitions, keep_also_iops=keep_also_iops,
keep_also_figures=keep_also_figures) #, export_png=export_png, export_html=export_html)
def execute_single_pipeline_with_rep(self, X: np.ndarray, y: np.ndarray,
poisoning_idx: np.ndarray, pipeline: pipe.ExtPipeline,
info: base.ExpInfo):
def _inner(pipeline_: pipe.ExtPipeline):
result_ = pipeline_.fit_transform(X, y)[0]
# if the result is 1d, we reshape it to make 2d, otherwise we have issues
# this way it is treated the same regardless the number of columns in the output.
result_ = result_ if len(result_.shape) > 1 else result_.reshape(-1, 1)
return pipeline_, result_
results: typing.List[typing.Tuple[pipe.ExtPipeline, np.ndarray]] = joblib.Parallel(
n_jobs=self.repetitions)(joblib.delayed(_inner)(copy.deepcopy(pipeline))
for _ in range(self.repetitions))
return ExecutePipelineWithRepOutput.from_results(results=[r[0] for r in results], poisoning_idx=poisoning_idx,
info=info, keep_also_iops=self.keep_also_iops,
keep_also_figures=self.keep_also_figures)
def execute_pipeline_on_all_poisoned(self, pipeline: pipe.ExtPipeline) -> ExecutePipelineOutputOnAll:
results: typing.List[ExecutePipelineWithRepOutput] = joblib.Parallel(n_jobs=len(self.poisoned_datasets))(
joblib.delayed(self.execute_single_pipeline_with_rep)(
pipeline=copy.deepcopy(pipeline),
X=poisoned_dataset.sel(
y=[val for val in poisoned_dataset.coords['y'].values
if val not in const.DG_IRRELEVANT_COLUMNS]).to_numpy(),
y=poisoned_dataset.sel(y=const.COORD_LABEL).to_numpy(),
info=base.ExpInfo(
perc_points=poisoned_dataset.attrs[const.KEY_ATTR_POISONED][const.COORD_PERC_POINTS],
perc_features=poisoned_dataset.attrs[const.KEY_ATTR_POISONED][const.COORD_PERC_FEATURES],
pipeline_name=pipeline.name
),
poisoning_idx=poisoned_dataset.sel(y=const.COORD_POISONED).to_numpy()
) for poisoned_dataset in self.poisoned_datasets.values())
return ExecutePipelineOutputOnAll.from_results(results=results, keep_also_iops=self.keep_also_iops,
keep_also_figures=self.keep_also_figures)
def do(self) -> typing.Dict[str, ExecutePipelineOutputOnAll]:
def _inner(pipeline_):
out = self.execute_pipeline_on_all_poisoned(pipeline=pipeline_)
return pipeline_.name, out
results: typing.List[typing.Tuple[str, ExecutePipelineOutputOnAll]] = joblib.Parallel(
n_jobs=len(self.pipelines))(
joblib.delayed(_inner)(pipeline_=pipeline) for pipeline in self.pipelines)
return dict(results)