-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmonolithic_oracle.py
36 lines (27 loc) · 1.29 KB
/
monolithic_oracle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import typing
import warnings
import numpy as np
from sklearn import base as sk_base
import utils
TEstimator = typing.TypeVar('TEstimator', bound=utils.EstimatorProtocol)
class EstimatorWithOracle(sk_base.BaseEstimator):
"""
Class wrapping an already initialized sklearn estimator training *on non-poisoned data points* only.
When poisoning_info is None, it fall backs to the wrapped estimator (printing a warning).
"""
def __init__(self, wrapped, poisoning_info: typing.Optional[np.ndarray] = None):
self.wrapped_ = wrapped
self.poisoning_info = poisoning_info
def fit(self, X, y, poisoning_info: typing.Optional[np.ndarray] = None, **kwargs):
if poisoning_info is not None and self.poisoning_info is None:
self.poisoning_info = poisoning_info
if self.poisoning_info is None:
warnings.warn(f'{self.__class__.__name__} invoked without poisoning_info.'
f'Wrapping: {self.wrapped_}')
return self.wrapped_.fit(X, y, **kwargs)
else:
return self.wrapped_.fit(X[~self.poisoning_info.astype(bool)], y[~self.poisoning_info.astype(bool)], **kwargs)
def predict(self, X):
return self.wrapped_.predict(X)
def __repr__(self):
return self.wrapped_.__repr__()