-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquality.py
259 lines (195 loc) · 10.3 KB
/
quality.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#!/bin/python3
from dataset_generator import DatasetGenerator, generateChangingServices, generateChange, \
generateNumberOfChangingServices, generateChangingSds, generateNumberOfChangingSds
from negotiation import negotiation, dynamicTrust
from dataset_reader import getServicesFromDataset, countChanges
from joblib import delayed, Parallel
import const
import copy
import pandas as pd
import numpy as np
def exportExecVal(destDir: str, services_num: int, sds_num: int, setting: dict, exec_num: int, quality: bool) -> dict:
execution_val = {
# contains the value of each execution to perform the average
'avg_succ_rate_our': [],
'avg_succ_rate_soa': [],
'application_stability_our': [],
'service_stability_our': [],
'relevant_change_our': [],
'avg_satisfaction': [],
}
filename = f"{destDir}/datasets/execution{exec_num + 1}/dataset_{setting['SETTING_NAME']}_{services_num}_{sds_num}.csv"
DatasetGenerator(setting).generate(services_num, sds_num, filename) # generate dataset
services = getServicesFromDataset(filename) # read dataset
system_our = negotiation(services) # negotiation with our approach
if quality:
system_soa = negotiation(services, SoA=True) # negotiation with state of art approximation
our_s_len = len(system_our)
services_len = len(services)
execution_val['avg_succ_rate_our'].append(our_s_len / services_len) # success rate of our
execution_val['avg_succ_rate_soa'].append(len(system_soa) / services_len) # success rate of state of art
sats = [] # list of satisfaction degrees
for n in system_our:
sats.append(n[1])
execution_val['avg_satisfaction'].append(np.mean(sats) if len(sats) > 0 else 0) # retrieve satisfaction avg
# generate changes on systems services
changing_services = generateChangingServices( # get the changing service
len(system_our),
generateNumberOfChangingServices( # get the number of changing services
len(system_our),
setting['CH_P']['SERVICE']
)
)
changes = Parallel( # parallelize changes generation
n_jobs=-1 # threads num = max available
)(
delayed(
generateChange # function to parallelize
)( # arguments
system_our[cn][0], # list of services
generateChangingSds( # get the changing sds
sds_num,
generateNumberOfChangingSds( # get the number of changing sd
sds_num,
setting['CH_P']['DATA']
)
)
)
for cn in changing_services # for each service in changing services
)
tmp_df = pd.read_csv(filename)
for i, cn in enumerate(changing_services):
system_our[cn][0]['change'] = changes[i]
if len(changes[i]) > 0:
tmp_df.at[system_our[cn][0]['service'], 'change'] = changes[i]
tmp_df.to_csv(filename, index=False)
# different dynamic trust
dynamic_trust_our = dynamicTrust(copy.deepcopy(system_our))
system_after_changes_our = dynamic_trust_our[1] # our approach
# check how many services remain in the system with different approaches
execution_val['application_stability_our'].append(
(len(system_after_changes_our) / our_s_len) if our_s_len > 0 else 0)
change_number = countChanges(system_our) # number of changes
if change_number == 0:
execution_val['relevant_change_our'].append(0)
else:
# execution_val['relevant_change_our'].append(1 - (dynamic_trust_our[0] / change_number))
execution_val['relevant_change_our'].append(dynamic_trust_our[0] / change_number)
changeActionCount = 0
execution_val['service_stability_our'].append(dynamic_trust_our[2])
return execution_val
def exportQualityResult(quality: bool, destDir: str):
"""
Function to run the negotiation and dynamic trust for each settings n times and export some results:
(For each value we consider average and standard deviation)
- success rate == number of accepted service during the negotiation / number of total services
- average satisfaction degree
- number of services after changes
- number of application stability
Each value is retrieved using our approach and some approximation of the state-of-the-art
Export in different ways:
- raw: a file for each setting containing average of n executions
- grouped: group the results on number of services and number of service data
- elaborated: a single file containing an average of every setting
All in CSV format
"""
negotiation_elaborated_results = []
dynamic_elaborated_results = []
elaborated_results_indexes = []
for setting in const.getSettings(): # for each setting
negotiation_row = []
negotiation_indexes = []
dynamic_row = []
dynamic_indexes = []
for services_num in const.SERVICES_NUM: # for each service number
for sds_num in const.SDS_NUM: # for each service data number
execution_val = { # contains the value of each execution to perform the average
'avg_succ_rate_our': [],
'avg_succ_rate_soa': [],
'application_stability_our': [],
'relevant_change_our': [],
'avg_satisfaction': [],
'service_stability_our': [],
}
executionsVals = Parallel(n_jobs=-1)(
delayed(exportExecVal)(destDir, services_num, sds_num, setting, i, quality) for i in
range(const.EXECUTION))
for vals in executionsVals:
for k in vals.keys():
execution_val[k] += vals[k]
# store datas
negotiation_row.append({
'SERVICES': services_num,
'SERVICE_DATA': sds_num,
'AVG_SUCC_RATE_OUR': np.mean(execution_val['avg_succ_rate_our']) if quality else 0,
'AVG_SUCC_RATE_SOA': np.mean(execution_val['avg_succ_rate_soa']) if quality else 0,
'AVG_SATISFACTION': np.mean(execution_val['avg_satisfaction']) if quality else 0,
'STD_SUCC_RATE_OUR': np.std(execution_val['avg_succ_rate_our']) if quality else 0,
'STD_SUCC_RATE_SOA': np.std(execution_val['avg_succ_rate_soa']) if quality else 0,
'STD_SATISFACTION': np.std(execution_val['avg_satisfaction']) if quality else 0
})
dynamic_row.append({
'SERVICES': services_num,
'SERVICE_DATA': sds_num,
'AVG_RELEVANT_CHANGES_OUR': np.mean(
execution_val['relevant_change_our']) if quality else 0,
'AVG_APPLICATION_STABILITY_OUR': np.mean(
execution_val['application_stability_our']) if quality else 0,
'AVG_SERVICE_STABILITY_OUR': np.mean(execution_val['service_stability_our']) if quality else 0,
'STD_RELEVANT_CHANGE_OUR': np.std(
execution_val['relevant_change_our']) if quality else 0,
'STD_APPLICATION_STABILITY_OUR': np.std(
execution_val['application_stability_our']) if quality else 0,
'STD_SERVICE_STABILITY_OUR': np.std(execution_val['service_stability_our']) if quality else 0,
})
negotiation_indexes.append(f'{services_num}_{sds_num}')
dynamic_indexes.append(f'{services_num}_{sds_num}')
# HANDSHAKE
# RAW RESULTS
negotiation_df = pd.DataFrame(negotiation_row)
negotiation_df.index = negotiation_indexes
negotiation_df.to_csv(f"{destDir}/quality/raw_results/negotiation/raw_results_{setting['SETTING_NAME']}.csv")
# GROUPED RESULTS
tmp_ind = []
tmp = negotiation_df.groupby('SERVICES').mean()
for ind in tmp.index:
tmp_ind.append(f'{ind}_*')
tmp.index = tmp_ind
tmp2 = negotiation_df.groupby('SERVICE_DATA').mean()
tmp_ind = []
for ind in tmp2.index:
tmp_ind.append(f'*_{ind}')
tmp2.index = tmp_ind
tmp = pd.concat([tmp, tmp2]).drop(columns=['SERVICE_DATA', 'SERVICES'])
tmp.index.name = 'SERVICES_SDS'
tmp.to_csv(f"{destDir}/quality/group_results/negotiation/group_results_{setting['SETTING_NAME']}.csv")
# ELABORATED RESULTS
negotiation_elaborated_results.append(negotiation_df.mean())
elaborated_results_indexes.append(setting['SETTING_NAME'])
# DYNAMIC TRUST
# RAW RESULTS
change_df = pd.DataFrame(dynamic_row)
change_df.index = dynamic_indexes
change_df.to_csv(f"{destDir}/quality/raw_results/dynamic_trust/raw_results_{setting['SETTING_NAME']}.csv")
# GROUPED RESULTS
tmp_ind = []
tmp = change_df.groupby('SERVICES').mean()
for ind in tmp.index:
tmp_ind.append(f'{ind}_*')
tmp.index = tmp_ind
tmp2 = change_df.groupby('SERVICE_DATA').mean()
tmp_ind = []
for ind in tmp2.index:
tmp_ind.append(f'*_{ind}')
tmp2.index = tmp_ind
tmp = pd.concat([tmp, tmp2]).drop(columns=['SERVICE_DATA', 'SERVICES'])
tmp.index.name = 'SERVICES_SDS'
tmp.to_csv(f"{destDir}/quality/group_results/dynamic_trust/group_results_{setting['SETTING_NAME']}.csv")
# ELABORATED RESULTS
dynamic_elaborated_results.append(change_df.mean())
negotiation_elaborated_df = pd.DataFrame(negotiation_elaborated_results)
negotiation_elaborated_df.index = elaborated_results_indexes
change_elaborated_df = pd.DataFrame(dynamic_elaborated_results)
change_elaborated_df.index = elaborated_results_indexes
negotiation_elaborated_df.to_csv(f'{destDir}/quality/elaborated_results/negotiation_results.csv')
change_elaborated_df.to_csv(f'{destDir}/quality/elaborated_results/dynamic_trust_results.csv')