-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathmain.py
223 lines (197 loc) · 7.23 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import torch.distributed as dist
import torch.multiprocessing as mp
import os
import os.path as osp
import sys
import numpy as np
import copy
import gc
import time
import argparse
from easydict import EasyDict as edict
from lib.model_zoo.texrnet import version as VERSION
from lib.cfg_helper import cfg_unique_holder as cfguh, \
get_experiment_id, \
experiment_folder, \
common_initiates
from configs.cfg_dataset import cfg_textseg, cfg_cocots, cfg_mlt, cfg_icdar13, cfg_totaltext
from configs.cfg_model import cfg_texrnet as cfg_mdel
from configs.cfg_base import cfg_train, cfg_test
from train_utils import \
set_cfg as set_cfg_train, \
set_cfg_hrnetw48 as set_cfg_hrnetw48_train, \
ts, ts_with_classifier, train
from eval_utils import \
set_cfg as set_cfg_eval, \
set_cfg_hrnetw48 as set_cfg_hrnetw48_eval, \
es, eval
cfguh().add_code(osp.basename(__file__))
def common_argparse():
cfg = edict()
cfg.DEBUG = args.debug
cfg.DIST_URL = 'tcp://127.0.0.1:{}'.format(args.port)
is_eval = args.eval
pth = args.pth
return cfg, is_eval, pth
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--debug' , action='store_true', default=False)
parser.add_argument('--hrnet' , action='store_true', default=False)
parser.add_argument('--eval' , action='store_true', default=False)
parser.add_argument('--pth' , type=str)
parser.add_argument('--gpu' , nargs='+', type=int)
parser.add_argument('--port' , type=int, default=11233)
parser.add_argument('--dsname', type=str, default='textseg')
parser.add_argument('--trainwithcls', action='store_true', default=False)
args = parser.parse_args()
istrain = not args.eval
if istrain:
cfg = copy.deepcopy(cfg_train)
else:
cfg = copy.deepcopy(cfg_test)
if istrain:
cfg.EXPERIMENT_ID = get_experiment_id()
else:
cfg.EXPERIMENT_ID = None
if args.dsname == "textseg":
cfg_data = cfg_textseg
elif args.dsname == "cocots":
cfg_data = cfg_cocots
elif args.dsname == "mlt":
cfg_data = cfg_mlt
elif args.dsname == "icdar13":
cfg_data = cfg_icdar13
elif args.dsname == "totaltext":
cfg_data = cfg_totaltext
else:
raise ValueError
cfg.DEBUG = args.debug
cfg.DIST_URL = 'tcp://127.0.0.1:{}'.format(args.port)
if args.gpu is None:
cfg.GPU_DEVICE = 'all'
else:
cfg.GPU_DEVICE = args.gpu
cfg.MODEL = copy.deepcopy(cfg_mdel)
cfg.DATA = copy.deepcopy(cfg_data)
if istrain:
cfg = set_cfg_train(cfg, dsname=args.dsname)
if args.hrnet:
cfg = set_cfg_hrnetw48_train(cfg)
else:
cfg = set_cfg_eval(cfg, dsname=args.dsname)
if args.hrnet:
cfg = set_cfg_hrnetw48_eval(cfg)
cfg.MODEL.TEXRNET.PRETRAINED_PTH = args.pth
if istrain:
if args.dsname == "textseg":
cfg.DATA.DATASET_MODE = 'train+val'
elif args.dsname == "cocots":
cfg.DATA.DATASET_MODE = 'train'
elif args.dsname == "mlt":
cfg.DATA.DATASET_MODE = 'trainseg'
elif args.dsname == "icdar13":
cfg.DATA.DATASET_MODE = 'train_fst'
elif args.dsname == "totaltext":
cfg.DATA.DATASET_MODE = 'train'
else:
raise ValueError
else:
if args.dsname == "textseg":
cfg.DATA.DATASET_MODE = 'test'
elif args.dsname == "cocots":
cfg.DATA.DATASET_MODE = 'val'
elif args.dsname == "mlt":
cfg.DATA.DATASET_MODE = 'valseg'
elif args.dsname == "icdar13":
cfg.DATA.DATASET_MODE = 'test_fst'
elif args.dsname == "totaltext":
cfg.DATA.DATASET_MODE = 'test'
else:
raise ValueError
if istrain:
if args.trainwithcls:
if args.dsname == 'textseg':
cfg.DATA.LOADER_PIPELINE = [
'NumpyImageLoader',
'TextSeg_SeglabelLoader',
'CharBboxSpLoader',]
cfg.DATA.RANDOM_RESIZE_CROP_SIZE = [32, 32]
cfg.DATA.RANDOM_RESIZE_CROP_SCALE = [0.8, 1.2]
cfg.DATA.RANDOM_RESIZE_CROP_RATIO = [3/4, 4/3]
cfg.DATA.TRANS_PIPELINE = [
'UniformNumpyType',
'TextSeg_RandomResizeCropCharBbox',
'NormalizeUint8ToZeroOne',
'Normalize',
'RandomScaleOneSide',
'RandomCrop',
]
elif args.dsname == 'icdar13':
cfg.DATA.LOADER_PIPELINE = [
'NumpyImageLoader',
'SeglabelLoader',
'CharBboxSpLoader',]
cfg.DATA.TRANS_PIPELINE = [
'UniformNumpyType',
'NormalizeUint8ToZeroOne',
'Normalize',
'RandomScaleOneSide',
'RandomCrop',
]
else:
raise ValueError
cfg.DATA.FORMATTER = 'SemChinsChbbxFormatter'
cfg.DATA.LOADER_SQUARE_BBOX = True
cfg.DATA.RANDOM_RESIZE_CROP_FROM = 'sem'
cfg.MODEL.TEXRNET.INTRAIN_GETPRED_FROM = 'sem'
# the one with 93.98% and trained on semantic crops
cfg.TRAIN.CLASSIFIER_PATH = osp.join(
'pretrained', 'init', 'resnet50_textcls.pth',
)
cfg.TRAIN.ROI_BBOX_PADDING_TYPE = 'semcrop'
cfg.TRAIN.ROI_ALIGN_SIZE = [32, 32]
cfg.TRAIN.UPDATE_CLASSIFIER = False
cfg.TRAIN.ACTIVATE_CLASSIFIER_FOR_SEGMODEL_AFTER = 0
cfg.TRAIN.LOSS_WEIGHT = {
'losssem' : 1,
'lossrfn' : 0.5,
'lossrfntri': 0.5,
'losscls' : 0.1,
}
if istrain:
if args.hrnet:
cfg.TRAIN.SIGNATURE = ['texrnet', 'hrnet']
else:
cfg.TRAIN.SIGNATURE = ['texrnet', 'deeplab']
cfg.LOG_DIR = experiment_folder(cfg, isnew=True, sig=cfg.TRAIN.SIGNATURE)
cfg.LOG_FILE = osp.join(cfg.LOG_DIR, 'train.log')
else:
cfg.LOG_DIR = osp.join(cfg.MISC_DIR, 'eval')
cfg.LOG_FILE = osp.join(cfg.LOG_DIR, 'eval.log')
cfg.TEST.SUB_DIR = None
if cfg.DEBUG:
cfg.EXPERIMENT_ID = 999999999999
cfg.DATA.NUM_WORKERS_PER_GPU = 0
cfg.TRAIN.BATCH_SIZE_PER_GPU = 2
cfg = common_initiates(cfg)
if istrain:
if args.trainwithcls:
exec_ts = ts_with_classifier()
else:
exec_ts = ts()
trainer = train(cfg)
trainer.register_stage(exec_ts)
# trainer(0)
mp.spawn(trainer,
args=(),
nprocs=cfg.GPU_COUNT,
join=True)
else:
exec_es = es()
tester = eval(cfg)
tester.register_stage(exec_es)
# tester(0)
mp.spawn(tester,
args=(),
nprocs=cfg.GPU_COUNT,
join=True)