|
| 1 | +import glob |
| 2 | +import re |
| 3 | +import shutil |
| 4 | +import tempfile |
| 5 | +import threading |
| 6 | +from os import path as osp |
| 7 | +from typing import Dict, List, Optional |
| 8 | + |
| 9 | +from ray.tune.integration.mlflow import \ |
| 10 | + MLflowLoggerCallback as _MLflowLoggerCallback |
| 11 | +from ray.tune.integration.mlflow import logger |
| 12 | +from ray.tune.result import TIMESTEPS_TOTAL, TRAINING_ITERATION |
| 13 | +from ray.tune.trial import Trial |
| 14 | +from ray.tune.utils.util import is_nan_or_inf |
| 15 | + |
| 16 | +from .builder import CALLBACKS |
| 17 | + |
| 18 | + |
| 19 | +def _create_temporary_copy(path, temp_file_name): |
| 20 | + temp_dir = tempfile.gettempdir() |
| 21 | + temp_path = osp.join(temp_dir, temp_file_name) |
| 22 | + shutil.copy2(path, temp_path) |
| 23 | + return temp_path |
| 24 | + |
| 25 | + |
| 26 | +@CALLBACKS.register_module() |
| 27 | +class MLflowLoggerCallback(_MLflowLoggerCallback): |
| 28 | + |
| 29 | + TRIAL_LIMIT = 5 |
| 30 | + |
| 31 | + def __init__(self, |
| 32 | + work_dir: Optional[str], |
| 33 | + metric: str = None, |
| 34 | + mode: str = None, |
| 35 | + scope: str = 'last', |
| 36 | + filter_nan_and_inf: bool = True, |
| 37 | + **kwargs): |
| 38 | + super().__init__(**kwargs) |
| 39 | + self.work_dir = work_dir |
| 40 | + self.metric = metric |
| 41 | + if mode and mode not in ['min', 'max']: |
| 42 | + raise ValueError('`mode` has to be None or one of [min, max]') |
| 43 | + self.mode = mode |
| 44 | + if scope not in ['all', 'last', 'avg', 'last-5-avg', 'last-10-avg']: |
| 45 | + raise ValueError( |
| 46 | + 'ExperimentAnalysis: attempting to get best trial for ' |
| 47 | + "metric {} for scope {} not in [\"all\", \"last\", \"avg\", " |
| 48 | + "\"last-5-avg\", \"last-10-avg\"]. " |
| 49 | + "If you didn't pass a `metric` parameter to `tune.run()`, " |
| 50 | + 'you have to pass one when fetching the best trial.'.format( |
| 51 | + self.metric, scope)) |
| 52 | + self.scope = scope if scope != 'all' else mode |
| 53 | + self.filter_nan_and_inf = filter_nan_and_inf |
| 54 | + self.thrs = [] |
| 55 | + |
| 56 | + def setup(self, *args, **kwargs): |
| 57 | + cp_trial_runs = getattr(self, '_trial_runs', dict()).copy() |
| 58 | + super().setup(*args, **kwargs) |
| 59 | + self._trial_runs = cp_trial_runs |
| 60 | + self.parent_run = self.client.create_run( |
| 61 | + experiment_id=self.experiment_id, tags=self.tags) |
| 62 | + |
| 63 | + def log_trial_start(self, trial: 'Trial'): |
| 64 | + # Create run if not already exists. |
| 65 | + if trial not in self._trial_runs: |
| 66 | + |
| 67 | + # Set trial name in tags. |
| 68 | + tags = self.tags.copy() |
| 69 | + tags['trial_name'] = str(trial) |
| 70 | + tags['mlflow.parentRunId'] = self.parent_run.info.run_id |
| 71 | + |
| 72 | + run = self.client.create_run( |
| 73 | + experiment_id=self.experiment_id, tags=tags) |
| 74 | + self._trial_runs[trial] = run.info.run_id |
| 75 | + |
| 76 | + run_id = self._trial_runs[trial] |
| 77 | + |
| 78 | + # Log the config parameters. |
| 79 | + config = trial.config |
| 80 | + |
| 81 | + for key, value in config.items(): |
| 82 | + key = re.sub(r'[^a-zA-Z0-9_=./\s]', '', key) |
| 83 | + self.client.log_param(run_id=run_id, key=key, value=value) |
| 84 | + |
| 85 | + def log_trial_result(self, iteration: int, trial: 'Trial', result: Dict): |
| 86 | + step = result.get(TIMESTEPS_TOTAL) or result[TRAINING_ITERATION] |
| 87 | + run_id = self._trial_runs[trial] |
| 88 | + for key, value in result.items(): |
| 89 | + key = re.sub(r'[^a-zA-Z0-9_=./\s]', '', key) |
| 90 | + try: |
| 91 | + value = float(value) |
| 92 | + except (ValueError, TypeError): |
| 93 | + logger.debug('Cannot log key {} with value {} since the ' |
| 94 | + 'value cannot be converted to float.'.format( |
| 95 | + key, value)) |
| 96 | + continue |
| 97 | + for idx in range(MLflowLoggerCallback.TRIAL_LIMIT): |
| 98 | + try: |
| 99 | + self.client.log_metric( |
| 100 | + run_id=run_id, key=key, value=value, step=step) |
| 101 | + except Exception as ex: |
| 102 | + print(ex) |
| 103 | + print(f'Retrying ... : {idx+1}') |
| 104 | + |
| 105 | + def log_trial_end(self, trial: 'Trial', failed: bool = False): |
| 106 | + |
| 107 | + def log_artifacts(run_id, |
| 108 | + path, |
| 109 | + trial_limit=MLflowLoggerCallback.TRIAL_LIMIT): |
| 110 | + for idx in range(trial_limit): |
| 111 | + try: |
| 112 | + self.client.log_artifact( |
| 113 | + run_id, local_path=path, artifact_path='checkpoint') |
| 114 | + except Exception as ex: |
| 115 | + print(ex) |
| 116 | + print(f'Retrying ... : {idx+1}') |
| 117 | + |
| 118 | + run_id = self._trial_runs[trial] |
| 119 | + |
| 120 | + if self.save_artifact: |
| 121 | + trial_id = trial.trial_id |
| 122 | + work_dir = osp.join(self.work_dir, trial_id) |
| 123 | + checkpoints = glob.glob(osp.join(work_dir, '*.pth')) |
| 124 | + if checkpoints: |
| 125 | + pth = _create_temporary_copy( |
| 126 | + max(checkpoints, key=osp.getctime), 'model_final.pth') |
| 127 | + th = threading.Thread(target=log_artifacts, args=(run_id, pth)) |
| 128 | + self.thrs.append(th) |
| 129 | + th.start() |
| 130 | + |
| 131 | + cfg = _create_temporary_copy( |
| 132 | + glob.glob(osp.join(work_dir, '*.py'))[0], 'model_config.py') |
| 133 | + if cfg: |
| 134 | + th = threading.Thread(target=log_artifacts, args=(run_id, cfg)) |
| 135 | + self.thrs.append(th) |
| 136 | + th.start() |
| 137 | + |
| 138 | + # Stop the run once trial finishes. |
| 139 | + status = 'FINISHED' if not failed else 'FAILED' |
| 140 | + self.client.set_terminated(run_id=run_id, status=status) |
| 141 | + |
| 142 | + def on_experiment_end(self, trials: List['Trial'], **info): |
| 143 | + for th in self.thrs: |
| 144 | + th.join() |
| 145 | + |
| 146 | + def cp_artifacts(src_run_id, |
| 147 | + dst_run_id, |
| 148 | + tmp_dir, |
| 149 | + trial_limit=MLflowLoggerCallback.TRIAL_LIMIT): |
| 150 | + for idx in range(trial_limit): |
| 151 | + try: |
| 152 | + self.client.download_artifacts( |
| 153 | + run_id=src_run_id, path='checkpoint', dst_path=tmp_dir) |
| 154 | + self.client.log_artifacts( |
| 155 | + run_id=dst_run_id, |
| 156 | + local_dir=osp.join(tmp_dir, 'checkpoint'), |
| 157 | + artifact_path='checkpoint') |
| 158 | + except Exception as ex: |
| 159 | + print(ex) |
| 160 | + print(f'Retrying ... : {idx+1}') |
| 161 | + |
| 162 | + if not self.metric or not self.mode: |
| 163 | + return |
| 164 | + |
| 165 | + best_trial, best_score = None, None |
| 166 | + for trial in trials: |
| 167 | + if self.metric not in trial.metric_analysis: |
| 168 | + continue |
| 169 | + |
| 170 | + score = trial.metric_analysis[self.metric][self.scope] |
| 171 | + if self.filter_nan_and_inf and is_nan_or_inf(score): |
| 172 | + continue |
| 173 | + |
| 174 | + best_score = best_score or score |
| 175 | + if self.mode == 'max' and score >= best_score or ( |
| 176 | + self.mode == 'min' and score <= best_score): |
| 177 | + best_trial, best_score = trial, score |
| 178 | + |
| 179 | + if best_trial is None: |
| 180 | + logger.warning( |
| 181 | + 'Could not find best trial. Did you pass the correct `metric` ' |
| 182 | + 'parameter?') |
| 183 | + return |
| 184 | + |
| 185 | + if best_trial not in self._trial_runs: |
| 186 | + return |
| 187 | + |
| 188 | + run_id = self._trial_runs[best_trial] |
| 189 | + run = self.client.get_run(run_id) |
| 190 | + parent_run_id = self.parent_run.info.run_id |
| 191 | + for key, value in run.data.params.items(): |
| 192 | + self.client.log_param(run_id=parent_run_id, key=key, value=value) |
| 193 | + for key, value in run.data.metrics.items(): |
| 194 | + self.client.log_metric(run_id=parent_run_id, key=key, value=value) |
| 195 | + |
| 196 | + if self.save_artifact: |
| 197 | + tmp_dir = tempfile.gettempdir() |
| 198 | + th = threading.Thread( |
| 199 | + target=cp_artifacts, args=(run_id, parent_run_id, tmp_dir)) |
| 200 | + th.start() |
| 201 | + th.join() |
| 202 | + |
| 203 | + self.client.set_terminated(run_id=parent_run_id, status='FINISHED') |
0 commit comments