Skip to content

Latest commit

 

History

History
64 lines (60 loc) · 1.68 KB

README.md

File metadata and controls

64 lines (60 loc) · 1.68 KB

A fair comparison in deep learning MRI reconstruction

This is a source code utilized for experiments of "A fair comparison in deep learning MRI reconstruction"

Requirements

Usage

Step 0: First time only

  1. Create conda environment
conda env create -n qsmnet -f requirements.yaml
  1. Data: please organize the qsmnet data according to the format below
data  
  └ D111
      └ train2  
          └ IMG.mat  
      └ train3   
          └ IMG.mat    
      └ ...
  └ D113
  └ ...

Step 1: dataset generation (MATLAB & Python)

  1. Dataset generation & augmentation (matlab)
cd code_for_dataset_generation
matlab
final_run
  1. Generate patches for deep learning (python)
cd code_for_dataset_generation
conda activate qsmnet
python patch.py

Step 2: QSMnet training & inference (Python)

  1. Activate conda environment
cd code_for_neural_network
conda activate qsmnet
  1. QSMnet training
    If you want to change hyperparameters, please replace the default value in parser arguments of "train.py"
python train.py -g 0 -s ../save/qsmnet111
  1. QSMnet inference
    If you want to change hyperparameters, please replace the default value in parser arguments of "test.py"
python test.py -g 0 -s ../save/qsmnet111/result -e 25
  1. Calculate evaluation metrics (NRMSE, SSIM, PSNR, HFEN) of inferenced maps
python testmetric.py -p ../network/qsmnet111/result