forked from yzqxy/Yolov8_obb_Prune_Track
-
Notifications
You must be signed in to change notification settings - Fork 0
/
detect_save_xml.py
328 lines (289 loc) · 17.6 KB
/
detect_save_xml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Run inference on images, videos, directories, streams, etc.
Usage:
$ python path/to/detect.py --weights yolov5s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
"""
import argparse
import os
import sys
from pathlib import Path
import cv2
import torch
import torch.backends.cudnn as cudnn
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend
from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr,
increment_path, non_max_suppression, non_max_suppression_obb, print_args, scale_coords, scale_polys, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, time_sync
from utils.rboxs_utils import poly2rbox, rbox2poly
from xml.dom.minidom import Document
from xml.etree import ElementTree as ET
def add_xml_ele(child_ele_name, parent_ele,doc,child_ele_text=None):
"""
为父节点对象添加子节点对象
:param child_ele_name: 子节点名称
:param parent_ele: 父节点对象
:param child_ele_text: 子节点内容文本
:return:
"""
# 创建子节点
child_ele = doc.createElement(child_ele_name)
# 父节点添加子节点
parent_ele.appendChild(child_ele)
if child_ele_text:
# 添加文本
child_ele.appendChild(doc.createTextNode(child_ele_text))
@torch.no_grad()
def run(weights=ROOT / 'yolov5s.pt', # model.pt path(s)
source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
save_xml=False,
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project=ROOT / 'runs/detect', # save results to project/name
xml_save_path_dir=ROOT /'xml_save/img',
name='exp', # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
):
source = str(source)
save_img = not nosave and not source.endswith('.txt') # save inference images
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
if is_url and is_file:
source = check_file(source) # download
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
device = select_device(device)
# device='cpu'
model = DetectMultiBackend(weights, device=device, dnn=dnn)
stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine
imgsz = check_img_size(imgsz, s=stride) # check image size
# Half
half &= (pt or jit or engine) and device.type != 'cpu' # half precision only supported by PyTorch on CUDA
if pt or jit:
model.model.half() if half else model.model.float()
# Dataloader
if webcam:
view_img = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
bs = len(dataset) # batch_size
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
bs = 1 # batch_size
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference
model.warmup(imgsz=(1, 3, *imgsz), half=half) # warmup
dt, seen = [0.0, 0.0, 0.0], 0
for path, im, im0s, vid_cap, s in dataset:
t1 = time_sync()
im = torch.from_numpy(im).to(device)
im = im.half() if half else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
t2 = time_sync()
dt[0] += t2 - t1
# Inference
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
pred = model(im, augment=augment, visualize=visualize)
# print('pred--',pred.shape)
t3 = time_sync()
dt[1] += t3 - t2
# NMS
pred = non_max_suppression_obb(pred, conf_thres, iou_thres, classes, agnostic_nms, multi_label=True, max_det=max_det)
dt[2] += time_sync() - t3
# Second-stage classifier (optional)
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
# Process predictions
for i, det in enumerate(pred): # per image
# pred_poly = rbox2poly(det[:, :5],det[:, 6:7]) # (n, [x1 y1 x2 y2 x3 y3 x4 y4])
pred_poly = rbox2poly(det[:, :5]) # (n, [x1 y1 x2 y2 x3 y3 x4 y4])
# print('pred_poly',pred_poly)
seen += 1
if webcam: # batch_size >= 1
p, im0, frame = path[i], im0s[i].copy(), dataset.count
s += f'{i}: '
else:
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # im.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
s += '%gx%g ' % im.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if len(det):
# Rescale polys from img_size to im0 size
# det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
pred_poly = scale_polys(im.shape[2:], pred_poly, im0.shape)
print('pred_poly',pred_poly)
det = torch.cat((pred_poly, det[:, -2:]), dim=1) # (n, [poly conf cls])
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *poly, conf, cls in reversed(det):
if save_txt: # Write to file
# xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
poly = poly.tolist()
line = (cls, *poly, conf) if save_conf else (cls, *poly) # label format
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_xml: # Write to file
names=['1','2']
rbox=poly2rbox(pred_poly[:,:8].cpu(),use_pi=True, use_gaussian=False)
img_name=path.split('/')[-1]
xml_dir=xml_save_path_dir
if not os.path.exists(xml_dir):
os.makedirs(xml_dir)
xml_name=img_name.replace("jpg", "xml").replace("png", "xml").replace("JPG", "xml")
# if not os.path.exists(xml_dir+'/'+xml_name):
# 创建根元素
doc = Document()
message_ele = doc.createElement('annotation')
# 引用本地XML Schema
doc.appendChild(message_ele)
# ===== 创建MessageHeader元素 =====
add_xml_ele(child_ele_name='folder', parent_ele=message_ele,doc=doc,child_ele_text='img')
add_xml_ele(child_ele_name='filename', parent_ele=message_ele, doc=doc,child_ele_text=xml_name)
add_xml_ele(child_ele_name='path', parent_ele=message_ele,doc=doc, child_ele_text=xml_name)
message_body_ele = doc.createElement('size')
add_xml_ele(child_ele_name='width', parent_ele=message_body_ele, doc=doc,child_ele_text=str(im0.shape[1]))
add_xml_ele(child_ele_name='height', parent_ele=message_body_ele,doc=doc, child_ele_text=str(im0.shape[0]))
add_xml_ele(child_ele_name='depth', parent_ele=message_body_ele,doc=doc, child_ele_text='3')
message_ele.appendChild(message_body_ele)
add_xml_ele(child_ele_name='segmented', parent_ele=message_ele,doc=doc, child_ele_text='0')
for i in range(len(rbox)):
print('float(pred[0][i][4].cpu())',float(pred[0][i][4].cpu()))
cls_name=names[int(pred[0][i][-1])]
object_ele = doc.createElement('object')
add_xml_ele(child_ele_name='type', parent_ele=object_ele,doc=doc, child_ele_text='robndbox')
add_xml_ele(child_ele_name='name', parent_ele=object_ele, doc=doc,child_ele_text=cls_name)
add_xml_ele(child_ele_name='pose', parent_ele=object_ele,doc=doc, child_ele_text='Unspecified')
add_xml_ele(child_ele_name='truncated', parent_ele=object_ele,doc=doc, child_ele_text='0')
add_xml_ele(child_ele_name='difficult', parent_ele=object_ele,doc=doc, child_ele_text='0')
bndbox_ele= doc.createElement('robndbox')
add_xml_ele(child_ele_name='cx', parent_ele=bndbox_ele, doc=doc,child_ele_text=str(int(rbox[i][0])))
add_xml_ele(child_ele_name='cy', parent_ele=bndbox_ele, doc=doc,child_ele_text=str(int(rbox[i][1])))
add_xml_ele(child_ele_name='w', parent_ele=bndbox_ele, doc=doc, child_ele_text=str(int(rbox[i][2])))
add_xml_ele(child_ele_name='h', parent_ele=bndbox_ele, doc=doc,child_ele_text=str(int(rbox[i][3])))
add_xml_ele(child_ele_name='angle', parent_ele=bndbox_ele, doc=doc,child_ele_text=str(-rbox[i][4]))
object_ele.appendChild(bndbox_ele)
message_ele.appendChild(object_ele)
with open(xml_dir+'/'+xml_name, 'w', encoding='utf-8') as f:
doc.writexml(f, indent='\t', newl='\n', addindent='\t', encoding='utf-8')
if save_img or save_crop or view_img: # Add poly to image
c = int(cls) # integer class
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
# annotator.box_label(xyxy, label, color=colors(c, True))
annotator.poly_label(poly, label, color=colors(c, True))
if save_crop: # Yolov5-obb doesn't support it yet
# save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
pass
# Print time (inference-only)
LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
# Stream results
im0 = annotator.result()
if view_img:
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path += '.mp4'
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer[i].write(im0)
# Print results
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if update:
strip_optimizer(weights) # update model (to fix SourceChangeWarning)
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'runs/train/yolov5n_DroneVehicle/weights/best.pt', help='model path(s)')
parser.add_argument('--source', type=str, default='/media/test/4d846cae-2315-4928-8d1b-ca6d3a61a3c6/DroneVehicle/val/raw/images/', help='file/dir/URL/glob, 0 for webcam')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[840], help='inference size h,w')
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.2, help='NMS IoU threshold')
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
parser.add_argument('--device', default='3', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='show results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-xml', action='store_true', help='save results to *.txt')
parser.add_argument('--xml_save_path_dir', default='xml_save/img')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--visualize', action='store_true', help='visualize features')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--line-thickness', default=2, type=int, help='bounding box thickness (pixels)')
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(FILE.stem, opt)
return opt
def main(opt):
check_requirements(exclude=('tensorboard', 'thop'))
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)