-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathReinforcementLearningGreedy.m
170 lines (138 loc) · 5.67 KB
/
ReinforcementLearningGreedy.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
function q=ReinforcementLearningGreedy(R, gamma, goalState, alpha, epsilon)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Original Q Learning by Example code, by Kardi Teknomo
% (http://people.revoledu.com/kardi/)
%
% Code amended by Ioannis Makris and Andrew Chalikiopoulos
% Model for an agent to find shortest path through a 10x10 maze grid
% This algorithm uses a the ?-greedy algorithm to choose the next state
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clc;
format short
format compact
% Four inputs: R, gamma and alpha, epsilon
if nargin<1,
% immediate reward matrix;
R=RewardMatrix100;
end
if nargin<2,
gamma=0.80; % discount factor
alpha=0.80; % learning rate
epsilon=0.9; % epsilon value for greedy algorithm
end
if nargin<3
goalState=74;
end
q=zeros(size(R)); % initialize Q as zero
q1=ones(size(R))*inf; % initialize previous Q as big number
count=0; % counter
steps=0; % counts the number of steps to goal
B=[]; % matrix to add results of steps and episode count
cumReward=0; % counter to calculate accumulated reward
exploitCount=0;
exploreCount=0;
for episode=1:50000
state=5; % Starting state of the agent
while state~=goalState % loop until find goal state
% select any action from this state using ?-greedy
x=find(R(state,:)>=-50); % find possible action of this state including punishment
if size(x,1)>0,
r=rand; % get a uniform random number between 0-1
% choose either explore or exploit
if r>=epsilon % exploit
[~,qmax]=(max(q(state,x(1:end)))); % check for action with highest Q value
x1 = x(qmax); % set action with highest Q value as next state
if epsilon>=0.5
epsilon=epsilon*0.99999; % decrease epsilon
else
epsilon=epsilon*0.9999; % decrease epsilon
end
cumReward=cumReward+q(state,x1); %keep track of cumulative reward for graph
exploitCount=exploitCount+1;
%display('The agent exploits.');
else % explore
x1=RandomPermutation(x); % randomize the possible action
x1=x1(1); % select an action (only the first element of random sequence)
if epsilon>=0.5
epsilon=epsilon*0.99999; % decrease epsilon
else
epsilon=epsilon*0.9999; % decrease epsilon
end
cumReward=cumReward+q(state,x1); %keep track of cumulative reward for graph
exploreCount=exploreCount+1;
%display('The agent explores.');
end
x2 = find(R(x1,:)>=0); % find possible steps from next step
qMax=(max(q(x1,x2(1:end)))); % extract qmax from all possible next states
q(state,x1)= q(state,x1)+alpha*((R(state,x1)+gamma*qMax)-q(state,x1)); % Temporal Difference Error
state=x1; % set state to next state
end
if state~=goalState % keep track of steps taken if goal not reached
steps=steps+1;
else
steps=steps+1;
%episodes=episodes+1; % if goal reach increase episode counter
A=[episode; steps; cumReward]; % create episodes, steps and cumReward matrix
B=horzcat(B, A); % add the new results to combined matrix
end
end
% break if convergence: small deviation on q for 1000 consecutive
if sum(sum(abs(q1-q)))<0.00001 && sum(sum(q >0)) && epsilon<0.01
if count>1000,
q1=q;
%episode % report last episode
break % for
else
q1=q;
count=count+1; % set counter if deviation of q is small
end
else
q1=q;
count=0; % reset counter when deviation of q from previous q is large
end
fprintf('Episode %i completed. The agent required %i steps to reach the goal.The cumulative reward gained is %i.\n', episode, steps, cumReward);
steps=0; % reset steps counter to 0
cumReward=0; % reset cumReward counter to 0
end
% row 4 in matrix is cumReward/steps taken per episode
%B(4,:) = (B(3,:)./B(2,:));
B(4,:) = rdivide(B(3,:),B(2,:));
%episodes vs cumReward taken averaged against steps taken
%plot(B(1,1 : 5 : end),B(3,1 : 5 : end));
%create a plot of episodes vs steps taken and episodes vs cumReward taken averaged against steps taken
figure % new figure
[combinedGraph] = plotyy(B(1,1 : 5 : end),B(2,1 : 5 : end), B(1,1 : 5 : end),B(4,1 : 5 : end));
title('Q-Learning Performance')
xlabel('Episodes')
ylabel(combinedGraph(1),'Steps') % left y-axis
ylabel(combinedGraph(2),'Cumulative Reward/Steps') % right y-axis
% create a plot of episodes vs cumReward/steps
figure
plot(B(1,1 : 5 : end),B(4,1 : 5 : end));
title('Cumulative Rewards vs Episodes')
xlabel('Episode')
ylabel('Cumulative Reward')
% create a plot of episodes vs steps
figure
plot(B(1, 1 : 5 : end),B(2, 1 : 5 : end));
title('Steps vs Episodes')
xlabel('Episode')
ylabel('Steps')
%normalize q
g=max(max(q));
if g>0,
q=100*q/g;
end
% display the shortest path to the goal
Optimal=[];
state=5;
Optimal=horzcat(Optimal,state);
while state~=goalState
[~,optimal]=(max(q(state,:)));
state = optimal;
Optimal=horzcat(Optimal,state);
end
display('Shortest path:')
display(Optimal);
display(exploitCount);
display(exploreCount);