Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feeding raw audio data to faster whisper over websockets #1077

Open
FredTheNoob opened this issue Oct 22, 2024 · 1 comment
Open

Feeding raw audio data to faster whisper over websockets #1077

FredTheNoob opened this issue Oct 22, 2024 · 1 comment

Comments

@FredTheNoob
Copy link

I have the following frontend code which sends audio data over a websocket in the browser (using the microphone):

const webSocket = new WebSocket('ws://127.0.0.1:3000');

webSocket.onmessage = event => {
    console.log('Message from server:', event.data);
}

webSocket.onopen = () => {
    console.log('Connected to server');
};

webSocket.onclose = (event) => {
    console.log('Disconnected from server: ', event.code, event.reason);
};

webSocket.onerror = error => {
    console.error('Error:', error);
}

const constraints = { audio: true };
let recorder;

function start() {
    navigator.mediaDevices
        .getUserMedia(constraints)
        .then(mediaStream => {

        // use MediaStream Recording API
        recorder = new MediaRecorder(mediaStream);

        // fires every one second and passes an BlobEvent
        recorder.ondataavailable = event => {
            // get the Blob from the event
            const blob = event.data;

            // and send that blob to the server...
            webSocket.send(blob);
        };

        // make data available event fire every one second
        recorder.start(2000);
    });
}

function stop() {
    recorder.stop();
    webSocket.close(1000, "Finished sending audio");
}

It uses the MediaRecorder API to send an audio chunk every 2 seconds. This is recieved on the backend like this:

main.py:

import asyncio
from io import BytesIO
import websockets

from ASR.ASR import ASR

_ASR = ASR("tiny", "auto","int8")

async def handler(websocket):
    while True:
        try:
            # Receiving binary data directly from the client
            data = await websocket.recv()
            #Handle the audion data with Whisper
            _ASR.process_audio(data)
            # Optionally, send an acknowledgment back to the client
            await websocket.send("Chunk received")
        except websockets.ConnectionClosed:
            print("Connection closed")
            break

# Start WebSocket server
start_server = websockets.serve(handler, "127.0.0.1", 3000)

asyncio.get_event_loop().run_until_complete(start_server)
asyncio.get_event_loop().run_forever()

ASR.py:

from io import BytesIO
import re
from typing import List
from ASR.LocalAgreement import LocalAgreement
from faster_whisper import WhisperModel 
import soundfile as sf

class ASR:
    audio_buffer: BytesIO = BytesIO()
    local_agreement = LocalAgreement()
    context:str = ""
    confirmed_sentences: List[str] = []
    def __init__ (self, model_size: str, device="auto", compute_type = "int8"):
        self.whisper_model = WhisperModel(model_size, device=device, compute_type=compute_type)
        
    def transcribe(self, audio_buffer: BytesIO, context: str):
        transcribed_text = ""
        segments, info = self.whisper_model.transcribe(audio_buffer)
        
        for segment in segments:
            transcribed_text += " " + segment.text
            
        return transcribed_text
    
    def process_audio(self, audio_chunk) -> str:
        # Append new audio data to the main buffer
        self.audio_buffer.write(audio_chunk)
        self.audio_buffer.seek(0)  # Reset buffer's position to the beginning
        
        transcribed_text = self.transcribe(self.audio_buffer, self.context)
        print("transcribed_text: " + transcribed_text)
        confirmed_text = self.local_agreement.confirm_tokens(transcribed_text)
        print(confirmed_text)
        punctuation = r"[.!?]"  # Regular expression pattern for ., !, or ?
        # Detect punctuation
        print("check punctuation: ", re.search(punctuation,confirmed_text))
        if re.search(punctuation,confirmed_text):
            split_sentence = re.split(f"({punctuation})", confirmed_text)

            # Join the punctuation back to the respective parts of the sentence
            sentence = [split_sentence[i] + split_sentence[i+1] for i in range(0, len(split_sentence)-1, 2)]

            print("sentence", sentence)
            self.confirmed_sentences.append(sentence[-1])
            self.context = " ".join(self.confirmed_sentences)
            print("context added: " + self.context)
            
            # Clear the main audio buffer only after processing is complete
            self.audio_buffer = BytesIO()
            
        return confirmed_text

The issue happens when I try to clear the audio buffer. My thought is to clear the buffer every time I detect a punctuation meaning a sentence has ended. However clearing the buffer throws the following error:

connection handler failed
Traceback (most recent call last):
  File "/Users/frederik/Uni/P7/P7Project/backend/.venv/lib/python3.12/site-packages/websockets/legacy/server.py", line 245, in handler
    await self.ws_handler(self)
  File "/Users/frederik/Uni/P7/P7Project/backend/./src/__main__.py", line 15, in handler
    _ASR.process_audio(data)
  File "/Users/frederik/Uni/P7/P7Project/backend/./src/ASR/ASR.py", line 30, in process_audio
    transcribed_text = self.transcribe(self.audio_buffer, self.context)
                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Users/frederik/Uni/P7/P7Project/backend/./src/ASR/ASR.py", line 18, in transcribe
    segments, info = self.whisper_model.transcribe(audio_buffer)
                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Users/frederik/Uni/P7/P7Project/backend/.venv/lib/python3.12/site-packages/faster_whisper/transcribe.py", line 319, in transcribe
    audio = decode_audio(audio, sampling_rate=sampling_rate)
            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Users/frederik/Uni/P7/P7Project/backend/.venv/lib/python3.12/site-packages/faster_whisper/audio.py", line 46, in decode_audio
    with av.open(input_file, mode="r", metadata_errors="ignore") as container:
         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "av/container/core.pyx", line 420, in av.container.core.open
  File "av/container/core.pyx", line 266, in av.container.core.Container.__cinit__
  File "av/container/core.pyx", line 286, in av.container.core.Container.err_check
  File "av/error.pyx", line 326, in av.error.err_check
av.error.InvalidDataError: [Errno 1094995529] Invalid data found when processing input: '<none>'
@bakazhou
Copy link

bakazhou commented Oct 24, 2024

Hi Fred,

I was facing same issue, below is my solution:

@app.websocket("/transcribe/streaming")
async def websocket_endpoint(websocket: WebSocket):
    await websocket.accept()
    buffer = b""
    while True:
        out = []
        raw_bytes = await websocket.receive_bytes()
        if not raw_bytes:
            break
        buffer += raw_bytes
        if buffer != b"":
            sf_buffer = soundfile.SoundFile(io.BytesIO(buffer), channels=1, endian="LITTLE", samplerate=SAMPLING_RATE,
                                            subtype="PCM_16", format="RAW")
            audio, _ = librosa.load(sf_buffer, sr=SAMPLING_RATE, dtype=np.float32)
            out.append(audio)
            buffer = b""
        if out:
            audio_data = np.concatenate(out)
            audio_buffer = np.array([], dtype=np.float32)
            audio_buffer = np.append(audio_buffer, audio_data)
            try:
                segments, info = recognize_service.recognize(audio=audio_buffer, beam_size=5, language="en")
                result = {
                    "language": info.language,
                    "language_probability": info.language_probability,
                    "segments": [
                        {
                            "start": segment.start,
                            "end": segment.end,
                            "text": segment.text
                        } for segment in segments
                    ],
                }
                await websocket.send_json(data=result)
            except Exception as e:
                print(e)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants