-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathparams.py
79 lines (77 loc) · 2.48 KB
/
params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import argparse
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--name",
type=str,
default='0',
help="Experiments Name",
)
parser.add_argument(
"--train_set",
default="datasets/train.json",
help="The path to the train set file.",
)
parser.add_argument(
"--valid_set",
default="datasets/valid.json",
help="The path to the valid set file.",
)
parser.add_argument(
"--dataset_root",
type=str,
default='datasets',
help="For evaluation, the folder to place test sets.",
)
parser.add_argument(
"--batch_size", type=int, default=32, help="Batch size for training per GPU."
)
parser.add_argument(
"--epochs", type=int, default=3, help="the number of training iterations for each sample."
)
parser.add_argument(
"--eval_batch_size", type=int, default=32, help="Batch size for eval per GPU."
)
parser.add_argument(
"--display", type=int, default=10, help="The step interval to display."
)
parser.add_argument(
"--save_step", type=int, default=200, help="The step interval to save models."
)
parser.add_argument(
"--checkpoint_path",
type=str,
default='logs',
help="Path to save the model",
)
parser.add_argument(
"--logs",
type=str,
default="logs",
help="Where to store logs. Use None to avoid storing logs.",
)
parser.add_argument(
"--max_length", type=int, default=512, help="The maximum length of input tokens."
)
parser.add_argument("--lr", type=float, default=2e-5, help="Learning rate.")
parser.add_argument("--beta1", type=float, default=0.9, help="Adam beta 1.")
parser.add_argument("--beta2", type=float, default=0.999, help="Adam beta 2.")
parser.add_argument("--eps", type=float, default=1e-08, help="Adam epsilon.")
parser.add_argument(
"--warmup", type=int, default=100, help="Number of steps to warmup."
)
parser.add_argument("--save_thres", type=float, default=0.8, help="The performance threshold to save models.")
parser.add_argument(
"--resume",
default=None,
type=str,
help="The model you want to load. Use None to avoid resume models.",
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="Random seed."
)
args = parser.parse_args()
return args