-
Notifications
You must be signed in to change notification settings - Fork 0
/
hand_detection.py
51 lines (39 loc) · 1.54 KB
/
hand_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#########################################################
#pip install mediapipe --user
# Create a virtual environment
#python -m venv myenv
# Activate the virtual environment (Windows)
#myenv\Scripts\activate
# Install mediapipe within the virtual environment
# pip install mediapipe
#########################################################
# import all neccessary libraries
import cv2
import mediapipe as mp
#########################################################
# step 2: Identify all necessary libraries
cap = cv2.VideoCapture(0)
mpHands= mp.solutions.hands
hands = mpHands.Hands()
mpDraw = mp.solutions.drawing_utils
#########################################################
# step 3: Switch on webcam
while True:
_, img = cap.read()
#convert image from BG to RGB
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#Apply mediapipe
results = hands.process(imgRGB)
# print (results.multi_hand_landmarks)
if results.multi_hand_landmarks:
for handLms in results.multi_hand_landmarks:
for id, lm in enumerate(handLms.landmark):
# print(id, lm)
mpDraw.draw_landmarks(img, handLms, mpHands.HAND_CONNECTIONS)
cv2.putText(img, "Hand Detection Program", (10,70), cv2.FONT_HERSHEY_PLAIN, 3, (255,255,255), 2)
cv2.imshow("Hands Detection Program", img)
if cv2.waitKey(1) & 0xFF == ord("x"):
break
# Release the capture once all the processing is done.
cap.release()
cv2.destroyAllWindows()