Skip to content
This repository has been archived by the owner on Nov 23, 2024. It is now read-only.

Missing keyword 'between' for boundary annotation #30

Closed
Aclrian opened this issue Jul 1, 2022 · 1 comment · Fixed by #111
Closed

Missing keyword 'between' for boundary annotation #30

Aclrian opened this issue Jul 1, 2022 · 1 comment · Fixed by #111
Labels
@boundary Related to the @boundary annotation bug 🪲 Something isn't working missing annotation An annotation should have been generated automatically but wasn't

Comments

@Aclrian
Copy link
Contributor

Aclrian commented Jul 1, 2022

URL Hash

#/sklearn/sklearn.cluster._mean_shift/estimate_bandwidth/quantile

Expected Annotation Type

@boundary

Expected Annotation Inputs

[0, 1]

Minimal API Data (optional)

Minimal API Data for `sklearn/sklearn.cluster._mean_shift/estimate_bandwidth/quantile`
{
    "schemaVersion": 1,
    "distribution": "scikit-learn",
    "package": "sklearn",
    "version": "1.1.1",
    "modules": [
        {
            "id": "sklearn/sklearn.cluster",
            "name": "sklearn.cluster",
            "imports": [],
            "from_imports": [
                {
                    "module": "sklearn.cluster._affinity_propagation",
                    "declaration": "affinity_propagation",
                    "alias": null
                },
                {
                    "module": "sklearn.cluster._affinity_propagation",
                    "declaration": "AffinityPropagation",
                    "alias": null
                },
                {
                    "module": "sklearn.cluster._agglomerative",
                    "declaration": "AgglomerativeClustering",
                    "alias": null
                },
                {
                    "module": "sklearn.cluster._agglomerative",
                    "declaration": "FeatureAgglomeration",
                    "alias": null
                },
                {
                    "module": "sklearn.cluster._agglomerative",
                    "declaration": "linkage_tree",
                    "alias": null
                },
                {
                    "module": "sklearn.cluster._agglomerative",
                    "declaration": "ward_tree",
                    "alias": null
                },
                {
                    "module": "sklearn.cluster._bicluster",
                    "declaration": "SpectralBiclustering",
                    "alias": null
                },
                {
                    "module": "sklearn.cluster._bicluster",
                    "declaration": "SpectralCoclustering",
                    "alias": null
                },
                {
                    "module": "sklearn.cluster._birch",
                    "declaration": "Birch",
                    "alias": null
                },
                {
                    "module": "sklearn.cluster._bisect_k_means",
                    "declaration": "BisectingKMeans",
                    "alias": null
                },
                {
                    "module": "sklearn.cluster._dbscan",
                    "declaration": "dbscan",
                    "alias": null
                },
                {
                    "module": "sklearn.cluster._dbscan",
                    "declaration": "DBSCAN",
                    "alias": null
                },
                {
                    "module": "sklearn.cluster._kmeans",
                    "declaration": "k_means",
                    "alias": null
                },
                {
                    "module": "sklearn.cluster._kmeans",
                    "declaration": "KMeans",
                    "alias": null
                },
                {
                    "module": "sklearn.cluster._kmeans",
                    "declaration": "kmeans_plusplus",
                    "alias": null
                },
                {
                    "module": "sklearn.cluster._kmeans",
                    "declaration": "MiniBatchKMeans",
                    "alias": null
                },
                {
                    "module": "sklearn.cluster._mean_shift",
                    "declaration": "estimate_bandwidth",
                    "alias": null
                },
                {
                    "module": "sklearn.cluster._mean_shift",
                    "declaration": "get_bin_seeds",
                    "alias": null
                },
                {
                    "module": "sklearn.cluster._mean_shift",
                    "declaration": "mean_shift",
                    "alias": null
                },
                {
                    "module": "sklearn.cluster._mean_shift",
                    "declaration": "MeanShift",
                    "alias": null
                },
                {
                    "module": "sklearn.cluster._optics",
                    "declaration": "cluster_optics_dbscan",
                    "alias": null
                },
                {
                    "module": "sklearn.cluster._optics",
                    "declaration": "cluster_optics_xi",
                    "alias": null
                },
                {
                    "module": "sklearn.cluster._optics",
                    "declaration": "compute_optics_graph",
                    "alias": null
                },
                {
                    "module": "sklearn.cluster._optics",
                    "declaration": "OPTICS",
                    "alias": null
                },
                {
                    "module": "sklearn.cluster._spectral",
                    "declaration": "spectral_clustering",
                    "alias": null
                },
                {
                    "module": "sklearn.cluster._spectral",
                    "declaration": "SpectralClustering",
                    "alias": null
                }
            ],
            "classes": [],
            "functions": [
                "sklearn/sklearn.cluster._mean_shift/estimate_bandwidth"
            ]
        }
    ],
    "classes": [],
    "functions": [
        {
            "id": "sklearn/sklearn.cluster._mean_shift/estimate_bandwidth",
            "name": "estimate_bandwidth",
            "qname": "sklearn.cluster._mean_shift.estimate_bandwidth",
            "decorators": [],
            "parameters": [
                {
                    "id": "sklearn/sklearn.cluster._mean_shift/estimate_bandwidth/quantile",
                    "name": "quantile",
                    "qname": "sklearn.cluster._mean_shift.estimate_bandwidth.quantile",
                    "default_value": "0.3",
                    "assigned_by": "NAME_ONLY",
                    "is_public": true,
                    "docstring": {
                        "type": "float, default=0.3",
                        "description": "Should be between [0, 1]\n0.5 means that the median of all pairwise distances is used."
                    },
                    "type": {}
                }
            ],
            "results": [],
            "is_public": true,
            "reexported_by": [
                "sklearn/sklearn.cluster"
            ],
            "description": "Estimate the bandwidth to use with the mean-shift algorithm.\n\nThat this function takes time at least quadratic in n_samples. For large\ndatasets, it's wise to set that parameter to a small value.",
            "docstring": "Estimate the bandwidth to use with the mean-shift algorithm.\n\n    That this function takes time at least quadratic in n_samples. For large\n    datasets, it's wise to set that parameter to a small value.\n\n    Parameters\n    ----------\n    X : array-like of shape (n_samples, n_features)\n        Input points.\n\n    quantile : float, default=0.3\n        Should be between [0, 1]\n        0.5 means that the median of all pairwise distances is used.\n\n    n_samples : int, default=None\n        The number of samples to use. If not given, all samples are used.\n\n    random_state : int, RandomState instance, default=None\n        The generator used to randomly select the samples from input points\n        for bandwidth estimation. Use an int to make the randomness\n        deterministic.\n        See :term:`Glossary <random_state>`.\n\n    n_jobs : int, default=None\n        The number of parallel jobs to run for neighbors search.\n        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.\n        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`\n        for more details.\n\n    Returns\n    -------\n    bandwidth : float\n        The bandwidth parameter.\n    "
        }
    ]
}

Minimal Usage Store (optional)

Minimal Usage Store for `sklearn/sklearn.cluster._mean_shift/estimate_bandwidth/quantile`
{
    "schemaVersion": 1,
    "module_counts": {
        "sklearn/sklearn.cluster": 2237
    },
    "class_counts": {},
    "function_counts": {
        "sklearn/sklearn.cluster._mean_shift/estimate_bandwidth": 3
    },
    "parameter_counts": {
        "sklearn/sklearn.cluster._mean_shift/estimate_bandwidth/quantile": 3
    },
    "value_counts": {
        "sklearn/sklearn.cluster._mean_shift/estimate_bandwidth/quantile": {
            "0.1": 1,
            "0.2": 1,
            "0.001": 1
        }
    }
}

Suggested Solution (optional)

No response

Additional Context (optional)

Documentation: Should be between [0, 1] 0.5 means that the median of all pairwise distances is used.

At #/sklearn/sklearn.cluster._optics/OPTICS/__init__/xi is the same problem.

@Aclrian Aclrian added bug 🪲 Something isn't working missing annotation An annotation should have been generated automatically but wasn't @boundary Related to the @boundary annotation labels Jul 1, 2022
@nvollroth
Copy link
Contributor

#/sklearn/sklearn.linear_model._ridge/Ridge/__init__/alpha
It should for the key word 'in i.e.', too.

Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
@boundary Related to the @boundary annotation bug 🪲 Something isn't working missing annotation An annotation should have been generated automatically but wasn't
Projects
Status: ✔️ Done
Development

Successfully merging a pull request may close this issue.

2 participants